This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the algorithm iterator R at ( K + 1 ) . (Contributed by Paul Chapman, 31-Mar-2011) (Revised by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | algrf.1 | |- Z = ( ZZ>= ` M ) |
|
| algrf.2 | |- R = seq M ( ( F o. 1st ) , ( Z X. { A } ) ) |
||
| algrf.3 | |- ( ph -> M e. ZZ ) |
||
| algrf.4 | |- ( ph -> A e. S ) |
||
| algrf.5 | |- ( ph -> F : S --> S ) |
||
| Assertion | algrp1 | |- ( ( ph /\ K e. Z ) -> ( R ` ( K + 1 ) ) = ( F ` ( R ` K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algrf.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | algrf.2 | |- R = seq M ( ( F o. 1st ) , ( Z X. { A } ) ) |
|
| 3 | algrf.3 | |- ( ph -> M e. ZZ ) |
|
| 4 | algrf.4 | |- ( ph -> A e. S ) |
|
| 5 | algrf.5 | |- ( ph -> F : S --> S ) |
|
| 6 | simpr | |- ( ( ph /\ K e. Z ) -> K e. Z ) |
|
| 7 | 6 1 | eleqtrdi | |- ( ( ph /\ K e. Z ) -> K e. ( ZZ>= ` M ) ) |
| 8 | seqp1 | |- ( K e. ( ZZ>= ` M ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( K + 1 ) ) = ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` K ) ( F o. 1st ) ( ( Z X. { A } ) ` ( K + 1 ) ) ) ) |
|
| 9 | 7 8 | syl | |- ( ( ph /\ K e. Z ) -> ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( K + 1 ) ) = ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` K ) ( F o. 1st ) ( ( Z X. { A } ) ` ( K + 1 ) ) ) ) |
| 10 | 2 | fveq1i | |- ( R ` ( K + 1 ) ) = ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` ( K + 1 ) ) |
| 11 | 2 | fveq1i | |- ( R ` K ) = ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` K ) |
| 12 | 11 | fveq2i | |- ( F ` ( R ` K ) ) = ( F ` ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` K ) ) |
| 13 | fvex | |- ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` K ) e. _V |
|
| 14 | fvex | |- ( ( Z X. { A } ) ` ( K + 1 ) ) e. _V |
|
| 15 | 13 14 | opco1i | |- ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` K ) ( F o. 1st ) ( ( Z X. { A } ) ` ( K + 1 ) ) ) = ( F ` ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` K ) ) |
| 16 | 12 15 | eqtr4i | |- ( F ` ( R ` K ) ) = ( ( seq M ( ( F o. 1st ) , ( Z X. { A } ) ) ` K ) ( F o. 1st ) ( ( Z X. { A } ) ` ( K + 1 ) ) ) |
| 17 | 9 10 16 | 3eqtr4g | |- ( ( ph /\ K e. Z ) -> ( R ` ( K + 1 ) ) = ( F ` ( R ` K ) ) ) |