This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolicc2 . (Contributed by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolicc.1 | |- ( ph -> A e. RR ) |
|
| ovolicc.2 | |- ( ph -> B e. RR ) |
||
| ovolicc.3 | |- ( ph -> A <_ B ) |
||
| ovolicc2.4 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| ovolicc2.5 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
||
| ovolicc2.6 | |- ( ph -> U e. ( ~P ran ( (,) o. F ) i^i Fin ) ) |
||
| ovolicc2.7 | |- ( ph -> ( A [,] B ) C_ U. U ) |
||
| ovolicc2.8 | |- ( ph -> G : U --> NN ) |
||
| ovolicc2.9 | |- ( ( ph /\ t e. U ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
||
| ovolicc2.10 | |- T = { u e. U | ( u i^i ( A [,] B ) ) =/= (/) } |
||
| Assertion | ovolicc2lem5 | |- ( ph -> ( B - A ) <_ sup ( ran S , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolicc.1 | |- ( ph -> A e. RR ) |
|
| 2 | ovolicc.2 | |- ( ph -> B e. RR ) |
|
| 3 | ovolicc.3 | |- ( ph -> A <_ B ) |
|
| 4 | ovolicc2.4 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 5 | ovolicc2.5 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 6 | ovolicc2.6 | |- ( ph -> U e. ( ~P ran ( (,) o. F ) i^i Fin ) ) |
|
| 7 | ovolicc2.7 | |- ( ph -> ( A [,] B ) C_ U. U ) |
|
| 8 | ovolicc2.8 | |- ( ph -> G : U --> NN ) |
|
| 9 | ovolicc2.9 | |- ( ( ph /\ t e. U ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
|
| 10 | ovolicc2.10 | |- T = { u e. U | ( u i^i ( A [,] B ) ) =/= (/) } |
|
| 11 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 12 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 13 | lbicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
|
| 14 | 11 12 3 13 | syl3anc | |- ( ph -> A e. ( A [,] B ) ) |
| 15 | 7 14 | sseldd | |- ( ph -> A e. U. U ) |
| 16 | eluni2 | |- ( A e. U. U <-> E. z e. U A e. z ) |
|
| 17 | 15 16 | sylib | |- ( ph -> E. z e. U A e. z ) |
| 18 | 6 | elin2d | |- ( ph -> U e. Fin ) |
| 19 | 10 | ssrab3 | |- T C_ U |
| 20 | ssfi | |- ( ( U e. Fin /\ T C_ U ) -> T e. Fin ) |
|
| 21 | 18 19 20 | sylancl | |- ( ph -> T e. Fin ) |
| 22 | 7 | adantr | |- ( ( ph /\ t e. T ) -> ( A [,] B ) C_ U. U ) |
| 23 | ineq1 | |- ( u = t -> ( u i^i ( A [,] B ) ) = ( t i^i ( A [,] B ) ) ) |
|
| 24 | 23 | neeq1d | |- ( u = t -> ( ( u i^i ( A [,] B ) ) =/= (/) <-> ( t i^i ( A [,] B ) ) =/= (/) ) ) |
| 25 | 24 10 | elrab2 | |- ( t e. T <-> ( t e. U /\ ( t i^i ( A [,] B ) ) =/= (/) ) ) |
| 26 | 25 | simplbi | |- ( t e. T -> t e. U ) |
| 27 | ffvelcdm | |- ( ( G : U --> NN /\ t e. U ) -> ( G ` t ) e. NN ) |
|
| 28 | 8 26 27 | syl2an | |- ( ( ph /\ t e. T ) -> ( G ` t ) e. NN ) |
| 29 | 5 | ffvelcdmda | |- ( ( ph /\ ( G ` t ) e. NN ) -> ( F ` ( G ` t ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 30 | 28 29 | syldan | |- ( ( ph /\ t e. T ) -> ( F ` ( G ` t ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 31 | 30 | elin2d | |- ( ( ph /\ t e. T ) -> ( F ` ( G ` t ) ) e. ( RR X. RR ) ) |
| 32 | xp2nd | |- ( ( F ` ( G ` t ) ) e. ( RR X. RR ) -> ( 2nd ` ( F ` ( G ` t ) ) ) e. RR ) |
|
| 33 | 31 32 | syl | |- ( ( ph /\ t e. T ) -> ( 2nd ` ( F ` ( G ` t ) ) ) e. RR ) |
| 34 | 2 | adantr | |- ( ( ph /\ t e. T ) -> B e. RR ) |
| 35 | 33 34 | ifcld | |- ( ( ph /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. RR ) |
| 36 | 25 | simprbi | |- ( t e. T -> ( t i^i ( A [,] B ) ) =/= (/) ) |
| 37 | 36 | adantl | |- ( ( ph /\ t e. T ) -> ( t i^i ( A [,] B ) ) =/= (/) ) |
| 38 | n0 | |- ( ( t i^i ( A [,] B ) ) =/= (/) <-> E. y y e. ( t i^i ( A [,] B ) ) ) |
|
| 39 | 37 38 | sylib | |- ( ( ph /\ t e. T ) -> E. y y e. ( t i^i ( A [,] B ) ) ) |
| 40 | 1 | adantr | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> A e. RR ) |
| 41 | simprr | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y e. ( t i^i ( A [,] B ) ) ) |
|
| 42 | 41 | elin2d | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y e. ( A [,] B ) ) |
| 43 | 2 | adantr | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> B e. RR ) |
| 44 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( y e. ( A [,] B ) <-> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) |
|
| 45 | 1 43 44 | syl2an2r | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( y e. ( A [,] B ) <-> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) |
| 46 | 42 45 | mpbid | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( y e. RR /\ A <_ y /\ y <_ B ) ) |
| 47 | 46 | simp1d | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y e. RR ) |
| 48 | 31 | adantrr | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( F ` ( G ` t ) ) e. ( RR X. RR ) ) |
| 49 | 48 32 | syl | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( 2nd ` ( F ` ( G ` t ) ) ) e. RR ) |
| 50 | 46 | simp2d | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> A <_ y ) |
| 51 | 41 | elin1d | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y e. t ) |
| 52 | 28 | adantrr | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( G ` t ) e. NN ) |
| 53 | fvco3 | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( G ` t ) e. NN ) -> ( ( (,) o. F ) ` ( G ` t ) ) = ( (,) ` ( F ` ( G ` t ) ) ) ) |
|
| 54 | 5 52 53 | syl2an2r | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( ( (,) o. F ) ` ( G ` t ) ) = ( (,) ` ( F ` ( G ` t ) ) ) ) |
| 55 | 26 9 | sylan2 | |- ( ( ph /\ t e. T ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
| 56 | 55 | adantrr | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
| 57 | 1st2nd2 | |- ( ( F ` ( G ` t ) ) e. ( RR X. RR ) -> ( F ` ( G ` t ) ) = <. ( 1st ` ( F ` ( G ` t ) ) ) , ( 2nd ` ( F ` ( G ` t ) ) ) >. ) |
|
| 58 | 48 57 | syl | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( F ` ( G ` t ) ) = <. ( 1st ` ( F ` ( G ` t ) ) ) , ( 2nd ` ( F ` ( G ` t ) ) ) >. ) |
| 59 | 58 | fveq2d | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( (,) ` ( F ` ( G ` t ) ) ) = ( (,) ` <. ( 1st ` ( F ` ( G ` t ) ) ) , ( 2nd ` ( F ` ( G ` t ) ) ) >. ) ) |
| 60 | df-ov | |- ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) = ( (,) ` <. ( 1st ` ( F ` ( G ` t ) ) ) , ( 2nd ` ( F ` ( G ` t ) ) ) >. ) |
|
| 61 | 59 60 | eqtr4di | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( (,) ` ( F ` ( G ` t ) ) ) = ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) ) |
| 62 | 54 56 61 | 3eqtr3d | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> t = ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) ) |
| 63 | 51 62 | eleqtrd | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y e. ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) ) |
| 64 | xp1st | |- ( ( F ` ( G ` t ) ) e. ( RR X. RR ) -> ( 1st ` ( F ` ( G ` t ) ) ) e. RR ) |
|
| 65 | 48 64 | syl | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( 1st ` ( F ` ( G ` t ) ) ) e. RR ) |
| 66 | rexr | |- ( ( 1st ` ( F ` ( G ` t ) ) ) e. RR -> ( 1st ` ( F ` ( G ` t ) ) ) e. RR* ) |
|
| 67 | rexr | |- ( ( 2nd ` ( F ` ( G ` t ) ) ) e. RR -> ( 2nd ` ( F ` ( G ` t ) ) ) e. RR* ) |
|
| 68 | elioo2 | |- ( ( ( 1st ` ( F ` ( G ` t ) ) ) e. RR* /\ ( 2nd ` ( F ` ( G ` t ) ) ) e. RR* ) -> ( y e. ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) <-> ( y e. RR /\ ( 1st ` ( F ` ( G ` t ) ) ) < y /\ y < ( 2nd ` ( F ` ( G ` t ) ) ) ) ) ) |
|
| 69 | 66 67 68 | syl2an | |- ( ( ( 1st ` ( F ` ( G ` t ) ) ) e. RR /\ ( 2nd ` ( F ` ( G ` t ) ) ) e. RR ) -> ( y e. ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) <-> ( y e. RR /\ ( 1st ` ( F ` ( G ` t ) ) ) < y /\ y < ( 2nd ` ( F ` ( G ` t ) ) ) ) ) ) |
| 70 | 65 49 69 | syl2anc | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( y e. ( ( 1st ` ( F ` ( G ` t ) ) ) (,) ( 2nd ` ( F ` ( G ` t ) ) ) ) <-> ( y e. RR /\ ( 1st ` ( F ` ( G ` t ) ) ) < y /\ y < ( 2nd ` ( F ` ( G ` t ) ) ) ) ) ) |
| 71 | 63 70 | mpbid | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> ( y e. RR /\ ( 1st ` ( F ` ( G ` t ) ) ) < y /\ y < ( 2nd ` ( F ` ( G ` t ) ) ) ) ) |
| 72 | 71 | simp3d | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y < ( 2nd ` ( F ` ( G ` t ) ) ) ) |
| 73 | 47 49 72 | ltled | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> y <_ ( 2nd ` ( F ` ( G ` t ) ) ) ) |
| 74 | 40 47 49 50 73 | letrd | |- ( ( ph /\ ( t e. T /\ y e. ( t i^i ( A [,] B ) ) ) ) -> A <_ ( 2nd ` ( F ` ( G ` t ) ) ) ) |
| 75 | 74 | expr | |- ( ( ph /\ t e. T ) -> ( y e. ( t i^i ( A [,] B ) ) -> A <_ ( 2nd ` ( F ` ( G ` t ) ) ) ) ) |
| 76 | 75 | exlimdv | |- ( ( ph /\ t e. T ) -> ( E. y y e. ( t i^i ( A [,] B ) ) -> A <_ ( 2nd ` ( F ` ( G ` t ) ) ) ) ) |
| 77 | 39 76 | mpd | |- ( ( ph /\ t e. T ) -> A <_ ( 2nd ` ( F ` ( G ` t ) ) ) ) |
| 78 | 3 | adantr | |- ( ( ph /\ t e. T ) -> A <_ B ) |
| 79 | breq2 | |- ( ( 2nd ` ( F ` ( G ` t ) ) ) = if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) -> ( A <_ ( 2nd ` ( F ` ( G ` t ) ) ) <-> A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) ) ) |
|
| 80 | breq2 | |- ( B = if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) -> ( A <_ B <-> A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) ) ) |
|
| 81 | 79 80 | ifboth | |- ( ( A <_ ( 2nd ` ( F ` ( G ` t ) ) ) /\ A <_ B ) -> A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) ) |
| 82 | 77 78 81 | syl2anc | |- ( ( ph /\ t e. T ) -> A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) ) |
| 83 | min2 | |- ( ( ( 2nd ` ( F ` ( G ` t ) ) ) e. RR /\ B e. RR ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) <_ B ) |
|
| 84 | 33 34 83 | syl2anc | |- ( ( ph /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) <_ B ) |
| 85 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( A [,] B ) <-> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. RR /\ A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) <_ B ) ) ) |
|
| 86 | 1 2 85 | syl2anc | |- ( ph -> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( A [,] B ) <-> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. RR /\ A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) <_ B ) ) ) |
| 87 | 86 | adantr | |- ( ( ph /\ t e. T ) -> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( A [,] B ) <-> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. RR /\ A <_ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) <_ B ) ) ) |
| 88 | 35 82 84 87 | mpbir3and | |- ( ( ph /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( A [,] B ) ) |
| 89 | 22 88 | sseldd | |- ( ( ph /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. U. U ) |
| 90 | eluni2 | |- ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. U. U <-> E. x e. U if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) |
|
| 91 | 89 90 | sylib | |- ( ( ph /\ t e. T ) -> E. x e. U if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) |
| 92 | simprl | |- ( ( ( ph /\ t e. T ) /\ ( x e. U /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) ) -> x e. U ) |
|
| 93 | simprr | |- ( ( ( ph /\ t e. T ) /\ ( x e. U /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) |
|
| 94 | 88 | adantr | |- ( ( ( ph /\ t e. T ) /\ ( x e. U /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( A [,] B ) ) |
| 95 | inelcm | |- ( ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( A [,] B ) ) -> ( x i^i ( A [,] B ) ) =/= (/) ) |
|
| 96 | 93 94 95 | syl2anc | |- ( ( ( ph /\ t e. T ) /\ ( x e. U /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) ) -> ( x i^i ( A [,] B ) ) =/= (/) ) |
| 97 | ineq1 | |- ( u = x -> ( u i^i ( A [,] B ) ) = ( x i^i ( A [,] B ) ) ) |
|
| 98 | 97 | neeq1d | |- ( u = x -> ( ( u i^i ( A [,] B ) ) =/= (/) <-> ( x i^i ( A [,] B ) ) =/= (/) ) ) |
| 99 | 98 10 | elrab2 | |- ( x e. T <-> ( x e. U /\ ( x i^i ( A [,] B ) ) =/= (/) ) ) |
| 100 | 92 96 99 | sylanbrc | |- ( ( ( ph /\ t e. T ) /\ ( x e. U /\ if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) ) -> x e. T ) |
| 101 | 91 100 93 | reximssdv | |- ( ( ph /\ t e. T ) -> E. x e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) |
| 102 | 101 | ralrimiva | |- ( ph -> A. t e. T E. x e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) |
| 103 | eleq2 | |- ( x = ( h ` t ) -> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x <-> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) ) |
|
| 104 | 103 | ac6sfi | |- ( ( T e. Fin /\ A. t e. T E. x e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. x ) -> E. h ( h : T --> T /\ A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) ) |
| 105 | 21 102 104 | syl2anc | |- ( ph -> E. h ( h : T --> T /\ A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) ) |
| 106 | 105 | adantr | |- ( ( ph /\ ( z e. U /\ A e. z ) ) -> E. h ( h : T --> T /\ A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) ) |
| 107 | 2fveq3 | |- ( x = t -> ( F ` ( G ` x ) ) = ( F ` ( G ` t ) ) ) |
|
| 108 | 107 | fveq2d | |- ( x = t -> ( 2nd ` ( F ` ( G ` x ) ) ) = ( 2nd ` ( F ` ( G ` t ) ) ) ) |
| 109 | 108 | breq1d | |- ( x = t -> ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B <-> ( 2nd ` ( F ` ( G ` t ) ) ) <_ B ) ) |
| 110 | 109 108 | ifbieq1d | |- ( x = t -> if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) = if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) ) |
| 111 | fveq2 | |- ( x = t -> ( h ` x ) = ( h ` t ) ) |
|
| 112 | 110 111 | eleq12d | |- ( x = t -> ( if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) <-> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) ) |
| 113 | 112 | cbvralvw | |- ( A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) <-> A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) |
| 114 | 1 | adantr | |- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> A e. RR ) |
| 115 | 2 | adantr | |- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> B e. RR ) |
| 116 | 3 | adantr | |- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> A <_ B ) |
| 117 | 5 | adantr | |- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 118 | 6 | adantr | |- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> U e. ( ~P ran ( (,) o. F ) i^i Fin ) ) |
| 119 | 7 | adantr | |- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> ( A [,] B ) C_ U. U ) |
| 120 | 8 | adantr | |- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> G : U --> NN ) |
| 121 | 9 | adantlr | |- ( ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) /\ t e. U ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
| 122 | simprrl | |- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> h : T --> T ) |
|
| 123 | simprrr | |- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) |
|
| 124 | 112 | rspccva | |- ( ( A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) |
| 125 | 123 124 | sylan | |- ( ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) |
| 126 | simprlr | |- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> A e. z ) |
|
| 127 | simprll | |- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> z e. U ) |
|
| 128 | 14 | adantr | |- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> A e. ( A [,] B ) ) |
| 129 | inelcm | |- ( ( A e. z /\ A e. ( A [,] B ) ) -> ( z i^i ( A [,] B ) ) =/= (/) ) |
|
| 130 | 126 128 129 | syl2anc | |- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> ( z i^i ( A [,] B ) ) =/= (/) ) |
| 131 | ineq1 | |- ( u = z -> ( u i^i ( A [,] B ) ) = ( z i^i ( A [,] B ) ) ) |
|
| 132 | 131 | neeq1d | |- ( u = z -> ( ( u i^i ( A [,] B ) ) =/= (/) <-> ( z i^i ( A [,] B ) ) =/= (/) ) ) |
| 133 | 132 10 | elrab2 | |- ( z e. T <-> ( z e. U /\ ( z i^i ( A [,] B ) ) =/= (/) ) ) |
| 134 | 127 130 133 | sylanbrc | |- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> z e. T ) |
| 135 | eqid | |- seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) = seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) |
|
| 136 | fveq2 | |- ( m = n -> ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` m ) = ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` n ) ) |
|
| 137 | 136 | eleq2d | |- ( m = n -> ( B e. ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` m ) <-> B e. ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` n ) ) ) |
| 138 | 137 | cbvrabv | |- { m e. NN | B e. ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` m ) } = { n e. NN | B e. ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` n ) } |
| 139 | eqid | |- inf ( { m e. NN | B e. ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` m ) } , RR , < ) = inf ( { m e. NN | B e. ( seq 1 ( ( h o. 1st ) , ( NN X. { z } ) ) ` m ) } , RR , < ) |
|
| 140 | 114 115 116 4 117 118 119 120 121 10 122 125 126 134 135 138 139 | ovolicc2lem4 | |- ( ( ph /\ ( ( z e. U /\ A e. z ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) |
| 141 | 140 | anassrs | |- ( ( ( ph /\ ( z e. U /\ A e. z ) ) /\ ( h : T --> T /\ A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) ) ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) |
| 142 | 141 | expr | |- ( ( ( ph /\ ( z e. U /\ A e. z ) ) /\ h : T --> T ) -> ( A. x e. T if ( ( 2nd ` ( F ` ( G ` x ) ) ) <_ B , ( 2nd ` ( F ` ( G ` x ) ) ) , B ) e. ( h ` x ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) ) |
| 143 | 113 142 | biimtrrid | |- ( ( ( ph /\ ( z e. U /\ A e. z ) ) /\ h : T --> T ) -> ( A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) ) |
| 144 | 143 | expimpd | |- ( ( ph /\ ( z e. U /\ A e. z ) ) -> ( ( h : T --> T /\ A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) ) |
| 145 | 144 | exlimdv | |- ( ( ph /\ ( z e. U /\ A e. z ) ) -> ( E. h ( h : T --> T /\ A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( h ` t ) ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) ) |
| 146 | 106 145 | mpd | |- ( ( ph /\ ( z e. U /\ A e. z ) ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) |
| 147 | 17 146 | rexlimddv | |- ( ph -> ( B - A ) <_ sup ( ran S , RR* , < ) ) |