This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by NM, 26-Dec-2005) (Proof shortened by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumge0.1 | |- ( ph -> A e. Fin ) |
|
| fsumge0.2 | |- ( ( ph /\ k e. A ) -> B e. RR ) |
||
| fsumge0.3 | |- ( ( ph /\ k e. A ) -> 0 <_ B ) |
||
| fsumless.4 | |- ( ph -> C C_ A ) |
||
| Assertion | fsumless | |- ( ph -> sum_ k e. C B <_ sum_ k e. A B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumge0.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fsumge0.2 | |- ( ( ph /\ k e. A ) -> B e. RR ) |
|
| 3 | fsumge0.3 | |- ( ( ph /\ k e. A ) -> 0 <_ B ) |
|
| 4 | fsumless.4 | |- ( ph -> C C_ A ) |
|
| 5 | difss | |- ( A \ C ) C_ A |
|
| 6 | ssfi | |- ( ( A e. Fin /\ ( A \ C ) C_ A ) -> ( A \ C ) e. Fin ) |
|
| 7 | 1 5 6 | sylancl | |- ( ph -> ( A \ C ) e. Fin ) |
| 8 | eldifi | |- ( k e. ( A \ C ) -> k e. A ) |
|
| 9 | 8 2 | sylan2 | |- ( ( ph /\ k e. ( A \ C ) ) -> B e. RR ) |
| 10 | 8 3 | sylan2 | |- ( ( ph /\ k e. ( A \ C ) ) -> 0 <_ B ) |
| 11 | 7 9 10 | fsumge0 | |- ( ph -> 0 <_ sum_ k e. ( A \ C ) B ) |
| 12 | 1 4 | ssfid | |- ( ph -> C e. Fin ) |
| 13 | 4 | sselda | |- ( ( ph /\ k e. C ) -> k e. A ) |
| 14 | 13 2 | syldan | |- ( ( ph /\ k e. C ) -> B e. RR ) |
| 15 | 12 14 | fsumrecl | |- ( ph -> sum_ k e. C B e. RR ) |
| 16 | 7 9 | fsumrecl | |- ( ph -> sum_ k e. ( A \ C ) B e. RR ) |
| 17 | 15 16 | addge01d | |- ( ph -> ( 0 <_ sum_ k e. ( A \ C ) B <-> sum_ k e. C B <_ ( sum_ k e. C B + sum_ k e. ( A \ C ) B ) ) ) |
| 18 | 11 17 | mpbid | |- ( ph -> sum_ k e. C B <_ ( sum_ k e. C B + sum_ k e. ( A \ C ) B ) ) |
| 19 | disjdif | |- ( C i^i ( A \ C ) ) = (/) |
|
| 20 | 19 | a1i | |- ( ph -> ( C i^i ( A \ C ) ) = (/) ) |
| 21 | undif | |- ( C C_ A <-> ( C u. ( A \ C ) ) = A ) |
|
| 22 | 4 21 | sylib | |- ( ph -> ( C u. ( A \ C ) ) = A ) |
| 23 | 22 | eqcomd | |- ( ph -> A = ( C u. ( A \ C ) ) ) |
| 24 | 2 | recnd | |- ( ( ph /\ k e. A ) -> B e. CC ) |
| 25 | 20 23 1 24 | fsumsplit | |- ( ph -> sum_ k e. A B = ( sum_ k e. C B + sum_ k e. ( A \ C ) B ) ) |
| 26 | 18 25 | breqtrrd | |- ( ph -> sum_ k e. C B <_ sum_ k e. A B ) |