This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set dominated by a finite set is finite. (Contributed by NM, 23-Mar-2006) (Revised by Mario Carneiro, 12-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domfi | |- ( ( A e. Fin /\ B ~<_ A ) -> B e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domeng | |- ( A e. Fin -> ( B ~<_ A <-> E. x ( B ~~ x /\ x C_ A ) ) ) |
|
| 2 | ssfi | |- ( ( A e. Fin /\ x C_ A ) -> x e. Fin ) |
|
| 3 | 2 | adantrl | |- ( ( A e. Fin /\ ( B ~~ x /\ x C_ A ) ) -> x e. Fin ) |
| 4 | enfii | |- ( ( x e. Fin /\ B ~~ x ) -> B e. Fin ) |
|
| 5 | 4 | adantrr | |- ( ( x e. Fin /\ ( B ~~ x /\ x C_ A ) ) -> B e. Fin ) |
| 6 | 3 5 | sylancom | |- ( ( A e. Fin /\ ( B ~~ x /\ x C_ A ) ) -> B e. Fin ) |
| 7 | 6 | ex | |- ( A e. Fin -> ( ( B ~~ x /\ x C_ A ) -> B e. Fin ) ) |
| 8 | 7 | exlimdv | |- ( A e. Fin -> ( E. x ( B ~~ x /\ x C_ A ) -> B e. Fin ) ) |
| 9 | 1 8 | sylbid | |- ( A e. Fin -> ( B ~<_ A -> B e. Fin ) ) |
| 10 | 9 | imp | |- ( ( A e. Fin /\ B ~<_ A ) -> B e. Fin ) |