This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolicc2 . (Contributed by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolicc.1 | |- ( ph -> A e. RR ) |
|
| ovolicc.2 | |- ( ph -> B e. RR ) |
||
| ovolicc.3 | |- ( ph -> A <_ B ) |
||
| ovolicc2.4 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| ovolicc2.5 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
||
| ovolicc2.6 | |- ( ph -> U e. ( ~P ran ( (,) o. F ) i^i Fin ) ) |
||
| ovolicc2.7 | |- ( ph -> ( A [,] B ) C_ U. U ) |
||
| ovolicc2.8 | |- ( ph -> G : U --> NN ) |
||
| ovolicc2.9 | |- ( ( ph /\ t e. U ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
||
| ovolicc2.10 | |- T = { u e. U | ( u i^i ( A [,] B ) ) =/= (/) } |
||
| ovolicc2.11 | |- ( ph -> H : T --> T ) |
||
| ovolicc2.12 | |- ( ( ph /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( H ` t ) ) |
||
| ovolicc2.13 | |- ( ph -> A e. C ) |
||
| ovolicc2.14 | |- ( ph -> C e. T ) |
||
| ovolicc2.15 | |- K = seq 1 ( ( H o. 1st ) , ( NN X. { C } ) ) |
||
| ovolicc2.16 | |- W = { n e. NN | B e. ( K ` n ) } |
||
| Assertion | ovolicc2lem2 | |- ( ( ph /\ ( N e. NN /\ -. N e. W ) ) -> ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) <_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolicc.1 | |- ( ph -> A e. RR ) |
|
| 2 | ovolicc.2 | |- ( ph -> B e. RR ) |
|
| 3 | ovolicc.3 | |- ( ph -> A <_ B ) |
|
| 4 | ovolicc2.4 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 5 | ovolicc2.5 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 6 | ovolicc2.6 | |- ( ph -> U e. ( ~P ran ( (,) o. F ) i^i Fin ) ) |
|
| 7 | ovolicc2.7 | |- ( ph -> ( A [,] B ) C_ U. U ) |
|
| 8 | ovolicc2.8 | |- ( ph -> G : U --> NN ) |
|
| 9 | ovolicc2.9 | |- ( ( ph /\ t e. U ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
|
| 10 | ovolicc2.10 | |- T = { u e. U | ( u i^i ( A [,] B ) ) =/= (/) } |
|
| 11 | ovolicc2.11 | |- ( ph -> H : T --> T ) |
|
| 12 | ovolicc2.12 | |- ( ( ph /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( H ` t ) ) |
|
| 13 | ovolicc2.13 | |- ( ph -> A e. C ) |
|
| 14 | ovolicc2.14 | |- ( ph -> C e. T ) |
|
| 15 | ovolicc2.15 | |- K = seq 1 ( ( H o. 1st ) , ( NN X. { C } ) ) |
|
| 16 | ovolicc2.16 | |- W = { n e. NN | B e. ( K ` n ) } |
|
| 17 | 2 | adantr | |- ( ( ph /\ N e. NN ) -> B e. RR ) |
| 18 | inss2 | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
|
| 19 | fss | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) ) -> F : NN --> ( RR X. RR ) ) |
|
| 20 | 5 18 19 | sylancl | |- ( ph -> F : NN --> ( RR X. RR ) ) |
| 21 | 20 | adantr | |- ( ( ph /\ N e. NN ) -> F : NN --> ( RR X. RR ) ) |
| 22 | 8 | adantr | |- ( ( ph /\ N e. NN ) -> G : U --> NN ) |
| 23 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 24 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 25 | 23 15 24 14 11 | algrf | |- ( ph -> K : NN --> T ) |
| 26 | 25 | ffvelcdmda | |- ( ( ph /\ N e. NN ) -> ( K ` N ) e. T ) |
| 27 | ineq1 | |- ( u = ( K ` N ) -> ( u i^i ( A [,] B ) ) = ( ( K ` N ) i^i ( A [,] B ) ) ) |
|
| 28 | 27 | neeq1d | |- ( u = ( K ` N ) -> ( ( u i^i ( A [,] B ) ) =/= (/) <-> ( ( K ` N ) i^i ( A [,] B ) ) =/= (/) ) ) |
| 29 | 28 10 | elrab2 | |- ( ( K ` N ) e. T <-> ( ( K ` N ) e. U /\ ( ( K ` N ) i^i ( A [,] B ) ) =/= (/) ) ) |
| 30 | 26 29 | sylib | |- ( ( ph /\ N e. NN ) -> ( ( K ` N ) e. U /\ ( ( K ` N ) i^i ( A [,] B ) ) =/= (/) ) ) |
| 31 | 30 | simpld | |- ( ( ph /\ N e. NN ) -> ( K ` N ) e. U ) |
| 32 | 22 31 | ffvelcdmd | |- ( ( ph /\ N e. NN ) -> ( G ` ( K ` N ) ) e. NN ) |
| 33 | 21 32 | ffvelcdmd | |- ( ( ph /\ N e. NN ) -> ( F ` ( G ` ( K ` N ) ) ) e. ( RR X. RR ) ) |
| 34 | xp2nd | |- ( ( F ` ( G ` ( K ` N ) ) ) e. ( RR X. RR ) -> ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) e. RR ) |
|
| 35 | 33 34 | syl | |- ( ( ph /\ N e. NN ) -> ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) e. RR ) |
| 36 | 17 35 | ltnled | |- ( ( ph /\ N e. NN ) -> ( B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) <-> -. ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) <_ B ) ) |
| 37 | simprl | |- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> N e. NN ) |
|
| 38 | 2 | adantr | |- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> B e. RR ) |
| 39 | 30 | adantrr | |- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> ( ( K ` N ) e. U /\ ( ( K ` N ) i^i ( A [,] B ) ) =/= (/) ) ) |
| 40 | 39 | simprd | |- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> ( ( K ` N ) i^i ( A [,] B ) ) =/= (/) ) |
| 41 | n0 | |- ( ( ( K ` N ) i^i ( A [,] B ) ) =/= (/) <-> E. x x e. ( ( K ` N ) i^i ( A [,] B ) ) ) |
|
| 42 | 40 41 | sylib | |- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> E. x x e. ( ( K ` N ) i^i ( A [,] B ) ) ) |
| 43 | xp1st | |- ( ( F ` ( G ` ( K ` N ) ) ) e. ( RR X. RR ) -> ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) e. RR ) |
|
| 44 | 33 43 | syl | |- ( ( ph /\ N e. NN ) -> ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) e. RR ) |
| 45 | 44 | adantrr | |- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) e. RR ) |
| 46 | 45 | adantr | |- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) e. RR ) |
| 47 | simpr | |- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> x e. ( ( K ` N ) i^i ( A [,] B ) ) ) |
|
| 48 | elin | |- ( x e. ( ( K ` N ) i^i ( A [,] B ) ) <-> ( x e. ( K ` N ) /\ x e. ( A [,] B ) ) ) |
|
| 49 | 47 48 | sylib | |- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> ( x e. ( K ` N ) /\ x e. ( A [,] B ) ) ) |
| 50 | 49 | simprd | |- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> x e. ( A [,] B ) ) |
| 51 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
|
| 52 | 1 2 51 | syl2anc | |- ( ph -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
| 53 | 52 | ad2antrr | |- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
| 54 | 50 53 | mpbid | |- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) ) |
| 55 | 54 | simp1d | |- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> x e. RR ) |
| 56 | 2 | ad2antrr | |- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> B e. RR ) |
| 57 | 49 | simpld | |- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> x e. ( K ` N ) ) |
| 58 | 39 | simpld | |- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> ( K ` N ) e. U ) |
| 59 | 1 2 3 4 5 6 7 8 9 | ovolicc2lem1 | |- ( ( ph /\ ( K ` N ) e. U ) -> ( x e. ( K ` N ) <-> ( x e. RR /\ ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) < x /\ x < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) ) |
| 60 | 58 59 | syldan | |- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> ( x e. ( K ` N ) <-> ( x e. RR /\ ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) < x /\ x < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) ) |
| 61 | 60 | adantr | |- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> ( x e. ( K ` N ) <-> ( x e. RR /\ ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) < x /\ x < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) ) |
| 62 | 57 61 | mpbid | |- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> ( x e. RR /\ ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) < x /\ x < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) |
| 63 | 62 | simp2d | |- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) < x ) |
| 64 | 54 | simp3d | |- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> x <_ B ) |
| 65 | 46 55 56 63 64 | ltletrd | |- ( ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) /\ x e. ( ( K ` N ) i^i ( A [,] B ) ) ) -> ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) < B ) |
| 66 | 42 65 | exlimddv | |- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) < B ) |
| 67 | simprr | |- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) |
|
| 68 | 1 2 3 4 5 6 7 8 9 | ovolicc2lem1 | |- ( ( ph /\ ( K ` N ) e. U ) -> ( B e. ( K ` N ) <-> ( B e. RR /\ ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) < B /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) ) |
| 69 | 58 68 | syldan | |- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> ( B e. ( K ` N ) <-> ( B e. RR /\ ( 1st ` ( F ` ( G ` ( K ` N ) ) ) ) < B /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) ) |
| 70 | 38 66 67 69 | mpbir3and | |- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> B e. ( K ` N ) ) |
| 71 | fveq2 | |- ( n = N -> ( K ` n ) = ( K ` N ) ) |
|
| 72 | 71 | eleq2d | |- ( n = N -> ( B e. ( K ` n ) <-> B e. ( K ` N ) ) ) |
| 73 | 72 16 | elrab2 | |- ( N e. W <-> ( N e. NN /\ B e. ( K ` N ) ) ) |
| 74 | 37 70 73 | sylanbrc | |- ( ( ph /\ ( N e. NN /\ B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) ) ) -> N e. W ) |
| 75 | 74 | expr | |- ( ( ph /\ N e. NN ) -> ( B < ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) -> N e. W ) ) |
| 76 | 36 75 | sylbird | |- ( ( ph /\ N e. NN ) -> ( -. ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) <_ B -> N e. W ) ) |
| 77 | 76 | con1d | |- ( ( ph /\ N e. NN ) -> ( -. N e. W -> ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) <_ B ) ) |
| 78 | 77 | impr | |- ( ( ph /\ ( N e. NN /\ -. N e. W ) ) -> ( 2nd ` ( F ` ( G ` ( K ` N ) ) ) ) <_ B ) |