This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law. (Contributed by NM, 23-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lelttr | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A <_ B /\ B < C ) -> A < C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leloe | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ B <-> ( A < B \/ A = B ) ) ) |
| 3 | lttr | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
|
| 4 | 3 | expd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B -> ( B < C -> A < C ) ) ) |
| 5 | breq1 | |- ( A = B -> ( A < C <-> B < C ) ) |
|
| 6 | 5 | biimprd | |- ( A = B -> ( B < C -> A < C ) ) |
| 7 | 6 | a1i | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A = B -> ( B < C -> A < C ) ) ) |
| 8 | 4 7 | jaod | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < B \/ A = B ) -> ( B < C -> A < C ) ) ) |
| 9 | 2 8 | sylbid | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ B -> ( B < C -> A < C ) ) ) |
| 10 | 9 | impd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A <_ B /\ B < C ) -> A < C ) ) |