This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mertens . (Contributed by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mertens.1 | |- ( ( ph /\ j e. NN0 ) -> ( F ` j ) = A ) |
|
| mertens.2 | |- ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) |
||
| mertens.3 | |- ( ( ph /\ j e. NN0 ) -> A e. CC ) |
||
| mertens.4 | |- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = B ) |
||
| mertens.5 | |- ( ( ph /\ k e. NN0 ) -> B e. CC ) |
||
| mertens.6 | |- ( ( ph /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
||
| mertens.7 | |- ( ph -> seq 0 ( + , K ) e. dom ~~> ) |
||
| mertens.8 | |- ( ph -> seq 0 ( + , G ) e. dom ~~> ) |
||
| mertens.9 | |- ( ph -> E e. RR+ ) |
||
| mertens.10 | |- T = { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } |
||
| mertens.11 | |- ( ps <-> ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
||
| mertens.12 | |- ( ph -> ( ps /\ ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) ) |
||
| mertens.13 | |- ( ph -> ( 0 <_ sup ( T , RR , < ) /\ ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) ) |
||
| Assertion | mertenslem1 | |- ( ph -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mertens.1 | |- ( ( ph /\ j e. NN0 ) -> ( F ` j ) = A ) |
|
| 2 | mertens.2 | |- ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) |
|
| 3 | mertens.3 | |- ( ( ph /\ j e. NN0 ) -> A e. CC ) |
|
| 4 | mertens.4 | |- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = B ) |
|
| 5 | mertens.5 | |- ( ( ph /\ k e. NN0 ) -> B e. CC ) |
|
| 6 | mertens.6 | |- ( ( ph /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
|
| 7 | mertens.7 | |- ( ph -> seq 0 ( + , K ) e. dom ~~> ) |
|
| 8 | mertens.8 | |- ( ph -> seq 0 ( + , G ) e. dom ~~> ) |
|
| 9 | mertens.9 | |- ( ph -> E e. RR+ ) |
|
| 10 | mertens.10 | |- T = { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } |
|
| 11 | mertens.11 | |- ( ps <-> ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
|
| 12 | mertens.12 | |- ( ph -> ( ps /\ ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) ) |
|
| 13 | mertens.13 | |- ( ph -> ( 0 <_ sup ( T , RR , < ) /\ ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) ) |
|
| 14 | 12 | simpld | |- ( ph -> ps ) |
| 15 | 14 11 | sylib | |- ( ph -> ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 16 | 15 | simpld | |- ( ph -> s e. NN ) |
| 17 | 16 | nnnn0d | |- ( ph -> s e. NN0 ) |
| 18 | 12 | simprd | |- ( ph -> ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
| 19 | 18 | simpld | |- ( ph -> t e. NN0 ) |
| 20 | 17 19 | nn0addcld | |- ( ph -> ( s + t ) e. NN0 ) |
| 21 | fzfid | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... m ) e. Fin ) |
|
| 22 | simpl | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ph ) |
|
| 23 | elfznn0 | |- ( j e. ( 0 ... m ) -> j e. NN0 ) |
|
| 24 | 22 23 3 | syl2an | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> A e. CC ) |
| 25 | eqid | |- ( ZZ>= ` ( ( m - j ) + 1 ) ) = ( ZZ>= ` ( ( m - j ) + 1 ) ) |
|
| 26 | fznn0sub | |- ( j e. ( 0 ... m ) -> ( m - j ) e. NN0 ) |
|
| 27 | 26 | adantl | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( m - j ) e. NN0 ) |
| 28 | peano2nn0 | |- ( ( m - j ) e. NN0 -> ( ( m - j ) + 1 ) e. NN0 ) |
|
| 29 | 27 28 | syl | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( ( m - j ) + 1 ) e. NN0 ) |
| 30 | 29 | nn0zd | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( ( m - j ) + 1 ) e. ZZ ) |
| 31 | simplll | |- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ph ) |
|
| 32 | eluznn0 | |- ( ( ( ( m - j ) + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) |
|
| 33 | 29 32 | sylan | |- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) |
| 34 | 31 33 4 | syl2anc | |- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ( G ` k ) = B ) |
| 35 | 31 33 5 | syl2anc | |- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> B e. CC ) |
| 36 | 8 | ad2antrr | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> seq 0 ( + , G ) e. dom ~~> ) |
| 37 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 38 | simpll | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ph ) |
|
| 39 | 4 5 | eqeltrd | |- ( ( ph /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
| 40 | 38 39 | sylan | |- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
| 41 | 37 29 40 | iserex | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( seq 0 ( + , G ) e. dom ~~> <-> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) ) |
| 42 | 36 41 | mpbid | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) |
| 43 | 25 30 34 35 42 | isumcl | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B e. CC ) |
| 44 | 24 43 | mulcld | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. CC ) |
| 45 | 21 44 | fsumcl | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. CC ) |
| 46 | 45 | abscld | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
| 47 | 44 | abscld | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
| 48 | 21 47 | fsumrecl | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
| 49 | 9 | rpred | |- ( ph -> E e. RR ) |
| 50 | 49 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> E e. RR ) |
| 51 | 21 44 | fsumabs | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) |
| 52 | fzfid | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... ( m - s ) ) e. Fin ) |
|
| 53 | 17 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. NN0 ) |
| 54 | 53 | nn0ge0d | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> 0 <_ s ) |
| 55 | eluzelz | |- ( m e. ( ZZ>= ` ( s + t ) ) -> m e. ZZ ) |
|
| 56 | 55 | adantl | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. ZZ ) |
| 57 | 56 | zred | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. RR ) |
| 58 | 53 | nn0red | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. RR ) |
| 59 | 57 58 | subge02d | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 <_ s <-> ( m - s ) <_ m ) ) |
| 60 | 54 59 | mpbid | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) <_ m ) |
| 61 | 53 37 | eleqtrdi | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. ( ZZ>= ` 0 ) ) |
| 62 | 16 | nnzd | |- ( ph -> s e. ZZ ) |
| 63 | uzid | |- ( s e. ZZ -> s e. ( ZZ>= ` s ) ) |
|
| 64 | 62 63 | syl | |- ( ph -> s e. ( ZZ>= ` s ) ) |
| 65 | uzaddcl | |- ( ( s e. ( ZZ>= ` s ) /\ t e. NN0 ) -> ( s + t ) e. ( ZZ>= ` s ) ) |
|
| 66 | 64 19 65 | syl2anc | |- ( ph -> ( s + t ) e. ( ZZ>= ` s ) ) |
| 67 | eqid | |- ( ZZ>= ` s ) = ( ZZ>= ` s ) |
|
| 68 | 67 | uztrn2 | |- ( ( ( s + t ) e. ( ZZ>= ` s ) /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. ( ZZ>= ` s ) ) |
| 69 | 66 68 | sylan | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. ( ZZ>= ` s ) ) |
| 70 | elfzuzb | |- ( s e. ( 0 ... m ) <-> ( s e. ( ZZ>= ` 0 ) /\ m e. ( ZZ>= ` s ) ) ) |
|
| 71 | 61 69 70 | sylanbrc | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. ( 0 ... m ) ) |
| 72 | fznn0sub2 | |- ( s e. ( 0 ... m ) -> ( m - s ) e. ( 0 ... m ) ) |
|
| 73 | 71 72 | syl | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. ( 0 ... m ) ) |
| 74 | elfzelz | |- ( ( m - s ) e. ( 0 ... m ) -> ( m - s ) e. ZZ ) |
|
| 75 | 73 74 | syl | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. ZZ ) |
| 76 | eluz | |- ( ( ( m - s ) e. ZZ /\ m e. ZZ ) -> ( m e. ( ZZ>= ` ( m - s ) ) <-> ( m - s ) <_ m ) ) |
|
| 77 | 75 56 76 | syl2anc | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m e. ( ZZ>= ` ( m - s ) ) <-> ( m - s ) <_ m ) ) |
| 78 | 60 77 | mpbird | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. ( ZZ>= ` ( m - s ) ) ) |
| 79 | fzss2 | |- ( m e. ( ZZ>= ` ( m - s ) ) -> ( 0 ... ( m - s ) ) C_ ( 0 ... m ) ) |
|
| 80 | 78 79 | syl | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... ( m - s ) ) C_ ( 0 ... m ) ) |
| 81 | 80 | sselda | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> j e. ( 0 ... m ) ) |
| 82 | 3 | abscld | |- ( ( ph /\ j e. NN0 ) -> ( abs ` A ) e. RR ) |
| 83 | 22 23 82 | syl2an | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( abs ` A ) e. RR ) |
| 84 | 43 | abscld | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR ) |
| 85 | 83 84 | remulcld | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
| 86 | 81 85 | syldan | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
| 87 | 52 86 | fsumrecl | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
| 88 | fzfid | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( m - s ) + 1 ) ... m ) e. Fin ) |
|
| 89 | elfznn0 | |- ( ( m - s ) e. ( 0 ... m ) -> ( m - s ) e. NN0 ) |
|
| 90 | 73 89 | syl | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. NN0 ) |
| 91 | peano2nn0 | |- ( ( m - s ) e. NN0 -> ( ( m - s ) + 1 ) e. NN0 ) |
|
| 92 | 90 91 | syl | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( m - s ) + 1 ) e. NN0 ) |
| 93 | 92 37 | eleqtrdi | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( m - s ) + 1 ) e. ( ZZ>= ` 0 ) ) |
| 94 | fzss1 | |- ( ( ( m - s ) + 1 ) e. ( ZZ>= ` 0 ) -> ( ( ( m - s ) + 1 ) ... m ) C_ ( 0 ... m ) ) |
|
| 95 | 93 94 | syl | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( m - s ) + 1 ) ... m ) C_ ( 0 ... m ) ) |
| 96 | 95 | sselda | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> j e. ( 0 ... m ) ) |
| 97 | 96 85 | syldan | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
| 98 | 88 97 | fsumrecl | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
| 99 | 9 | rphalfcld | |- ( ph -> ( E / 2 ) e. RR+ ) |
| 100 | 99 | rpred | |- ( ph -> ( E / 2 ) e. RR ) |
| 101 | 100 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( E / 2 ) e. RR ) |
| 102 | elfznn0 | |- ( j e. ( 0 ... ( m - s ) ) -> j e. NN0 ) |
|
| 103 | 22 102 82 | syl2an | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` A ) e. RR ) |
| 104 | 52 103 | fsumrecl | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) e. RR ) |
| 105 | 104 101 | remulcld | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) e. RR ) |
| 106 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 107 | eqidd | |- ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( K ` j ) ) |
|
| 108 | 2 82 | eqeltrd | |- ( ( ph /\ j e. NN0 ) -> ( K ` j ) e. RR ) |
| 109 | 37 106 107 108 7 | isumrecl | |- ( ph -> sum_ j e. NN0 ( K ` j ) e. RR ) |
| 110 | 3 | absge0d | |- ( ( ph /\ j e. NN0 ) -> 0 <_ ( abs ` A ) ) |
| 111 | 110 2 | breqtrrd | |- ( ( ph /\ j e. NN0 ) -> 0 <_ ( K ` j ) ) |
| 112 | 37 106 107 108 7 111 | isumge0 | |- ( ph -> 0 <_ sum_ j e. NN0 ( K ` j ) ) |
| 113 | 109 112 | ge0p1rpd | |- ( ph -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR+ ) |
| 114 | 113 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR+ ) |
| 115 | 105 114 | rerpdivcld | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR ) |
| 116 | 99 113 | rpdivcld | |- ( ph -> ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR+ ) |
| 117 | 116 | rpred | |- ( ph -> ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR ) |
| 118 | 117 | ad2antrr | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR ) |
| 119 | 103 118 | remulcld | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) e. RR ) |
| 120 | 81 30 | syldan | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( m - j ) + 1 ) e. ZZ ) |
| 121 | simplll | |- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ph ) |
|
| 122 | 81 29 | syldan | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( m - j ) + 1 ) e. NN0 ) |
| 123 | 122 32 | sylan | |- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) |
| 124 | 121 123 4 | syl2anc | |- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ( G ` k ) = B ) |
| 125 | 121 123 5 | syl2anc | |- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> B e. CC ) |
| 126 | 81 42 | syldan | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) |
| 127 | 25 120 124 125 126 | isumcl | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B e. CC ) |
| 128 | 127 | abscld | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR ) |
| 129 | 82 110 | jca | |- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) |
| 130 | 22 102 129 | syl2an | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) |
| 131 | 124 | sumeq2dv | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) |
| 132 | 131 | fveq2d | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 133 | fvoveq1 | |- ( n = ( m - j ) -> ( ZZ>= ` ( n + 1 ) ) = ( ZZ>= ` ( ( m - j ) + 1 ) ) ) |
|
| 134 | 133 | sumeq1d | |- ( n = ( m - j ) -> sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) |
| 135 | 134 | fveq2d | |- ( n = ( m - j ) -> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) ) |
| 136 | 135 | breq1d | |- ( n = ( m - j ) -> ( ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 137 | 15 | simprd | |- ( ph -> A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 138 | 137 | ad2antrr | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 139 | elfzelz | |- ( j e. ( 0 ... ( m - s ) ) -> j e. ZZ ) |
|
| 140 | 139 | adantl | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> j e. ZZ ) |
| 141 | 140 | zred | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> j e. RR ) |
| 142 | 55 | ad2antlr | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> m e. ZZ ) |
| 143 | 142 | zred | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> m e. RR ) |
| 144 | 62 | ad2antrr | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> s e. ZZ ) |
| 145 | 144 | zred | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> s e. RR ) |
| 146 | elfzle2 | |- ( j e. ( 0 ... ( m - s ) ) -> j <_ ( m - s ) ) |
|
| 147 | 146 | adantl | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> j <_ ( m - s ) ) |
| 148 | 141 143 145 147 | lesubd | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> s <_ ( m - j ) ) |
| 149 | 142 140 | zsubcld | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( m - j ) e. ZZ ) |
| 150 | eluz | |- ( ( s e. ZZ /\ ( m - j ) e. ZZ ) -> ( ( m - j ) e. ( ZZ>= ` s ) <-> s <_ ( m - j ) ) ) |
|
| 151 | 144 149 150 | syl2anc | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( m - j ) e. ( ZZ>= ` s ) <-> s <_ ( m - j ) ) ) |
| 152 | 148 151 | mpbird | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( m - j ) e. ( ZZ>= ` s ) ) |
| 153 | 136 138 152 | rspcdva | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 154 | 132 153 | eqbrtrrd | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 155 | 128 118 154 | ltled | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 156 | lemul2a | |- ( ( ( ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR /\ ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR /\ ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
|
| 157 | 128 118 130 155 156 | syl31anc | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 158 | 52 86 119 157 | fsumle | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 159 | 104 | recnd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) e. CC ) |
| 160 | 99 | rpcnd | |- ( ph -> ( E / 2 ) e. CC ) |
| 161 | 160 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( E / 2 ) e. CC ) |
| 162 | peano2re | |- ( sum_ j e. NN0 ( K ` j ) e. RR -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR ) |
|
| 163 | 109 162 | syl | |- ( ph -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR ) |
| 164 | 163 | recnd | |- ( ph -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. CC ) |
| 165 | 164 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. CC ) |
| 166 | 113 | rpne0d | |- ( ph -> ( sum_ j e. NN0 ( K ` j ) + 1 ) =/= 0 ) |
| 167 | 166 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. NN0 ( K ` j ) + 1 ) =/= 0 ) |
| 168 | 159 161 165 167 | divassd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) = ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 169 | fveq2 | |- ( n = j -> ( K ` n ) = ( K ` j ) ) |
|
| 170 | 169 | cbvsumv | |- sum_ n e. NN0 ( K ` n ) = sum_ j e. NN0 ( K ` j ) |
| 171 | 170 | oveq1i | |- ( sum_ n e. NN0 ( K ` n ) + 1 ) = ( sum_ j e. NN0 ( K ` j ) + 1 ) |
| 172 | 171 | oveq2i | |- ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) = ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) |
| 173 | 172 116 | eqeltrid | |- ( ph -> ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) e. RR+ ) |
| 174 | 173 | rpcnd | |- ( ph -> ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) e. CC ) |
| 175 | 174 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) e. CC ) |
| 176 | 82 | recnd | |- ( ( ph /\ j e. NN0 ) -> ( abs ` A ) e. CC ) |
| 177 | 22 102 176 | syl2an | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` A ) e. CC ) |
| 178 | 52 175 177 | fsummulc1 | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) ) |
| 179 | 172 | oveq2i | |- ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 180 | 172 | oveq2i | |- ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 181 | 180 | a1i | |- ( j e. ( 0 ... ( m - s ) ) -> ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 182 | 181 | sumeq2i | |- sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 183 | 178 179 182 | 3eqtr3g | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) = sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 184 | 168 183 | eqtrd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) = sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 185 | 158 184 | breqtrrd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 186 | 109 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. NN0 ( K ` j ) e. RR ) |
| 187 | 163 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR ) |
| 188 | 0zd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> 0 e. ZZ ) |
|
| 189 | fz0ssnn0 | |- ( 0 ... ( m - s ) ) C_ NN0 |
|
| 190 | 189 | a1i | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... ( m - s ) ) C_ NN0 ) |
| 191 | 2 | adantlr | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) |
| 192 | 82 | adantlr | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. NN0 ) -> ( abs ` A ) e. RR ) |
| 193 | 110 | adantlr | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. NN0 ) -> 0 <_ ( abs ` A ) ) |
| 194 | 7 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> seq 0 ( + , K ) e. dom ~~> ) |
| 195 | 37 188 52 190 191 192 193 194 | isumless | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) <_ sum_ j e. NN0 ( abs ` A ) ) |
| 196 | 2 | sumeq2dv | |- ( ph -> sum_ j e. NN0 ( K ` j ) = sum_ j e. NN0 ( abs ` A ) ) |
| 197 | 196 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. NN0 ( K ` j ) = sum_ j e. NN0 ( abs ` A ) ) |
| 198 | 195 197 | breqtrrd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) <_ sum_ j e. NN0 ( K ` j ) ) |
| 199 | 109 | ltp1d | |- ( ph -> sum_ j e. NN0 ( K ` j ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) |
| 200 | 199 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. NN0 ( K ` j ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) |
| 201 | 104 186 187 198 200 | lelttrd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) |
| 202 | 99 | rpregt0d | |- ( ph -> ( ( E / 2 ) e. RR /\ 0 < ( E / 2 ) ) ) |
| 203 | 202 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( E / 2 ) e. RR /\ 0 < ( E / 2 ) ) ) |
| 204 | ltmul1 | |- ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) e. RR /\ ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR /\ ( ( E / 2 ) e. RR /\ 0 < ( E / 2 ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) <-> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) ) |
|
| 205 | 104 187 203 204 | syl3anc | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) <-> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) ) |
| 206 | 201 205 | mpbid | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) |
| 207 | 113 | rpregt0d | |- ( ph -> ( ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR /\ 0 < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 208 | 207 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR /\ 0 < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 209 | ltdivmul | |- ( ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) e. RR /\ ( E / 2 ) e. RR /\ ( ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR /\ 0 < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) -> ( ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) < ( E / 2 ) <-> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) ) |
|
| 210 | 105 101 208 209 | syl3anc | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) < ( E / 2 ) <-> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) ) |
| 211 | 206 210 | mpbird | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) < ( E / 2 ) ) |
| 212 | 87 115 101 185 211 | lelttrd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < ( E / 2 ) ) |
| 213 | 13 | simprd | |- ( ph -> ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) |
| 214 | suprcl | |- ( ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) -> sup ( T , RR , < ) e. RR ) |
|
| 215 | 213 214 | syl | |- ( ph -> sup ( T , RR , < ) e. RR ) |
| 216 | 100 215 | remulcld | |- ( ph -> ( ( E / 2 ) x. sup ( T , RR , < ) ) e. RR ) |
| 217 | 13 | simpld | |- ( ph -> 0 <_ sup ( T , RR , < ) ) |
| 218 | 215 217 | ge0p1rpd | |- ( ph -> ( sup ( T , RR , < ) + 1 ) e. RR+ ) |
| 219 | 216 218 | rerpdivcld | |- ( ph -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) |
| 220 | 219 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) |
| 221 | 16 | nnrpd | |- ( ph -> s e. RR+ ) |
| 222 | 99 221 | rpdivcld | |- ( ph -> ( ( E / 2 ) / s ) e. RR+ ) |
| 223 | 222 218 | rpdivcld | |- ( ph -> ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. RR+ ) |
| 224 | 223 | rpred | |- ( ph -> ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) |
| 225 | 224 215 | remulcld | |- ( ph -> ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. RR ) |
| 226 | 225 | ad2antrr | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. RR ) |
| 227 | simpll | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ph ) |
|
| 228 | 96 23 | syl | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> j e. NN0 ) |
| 229 | 227 228 82 | syl2anc | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` A ) e. RR ) |
| 230 | 224 | ad2antrr | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) |
| 231 | 227 228 2 | syl2anc | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( K ` j ) = ( abs ` A ) ) |
| 232 | fveq2 | |- ( m = j -> ( K ` m ) = ( K ` j ) ) |
|
| 233 | 232 | breq1d | |- ( m = j -> ( ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) <-> ( K ` j ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
| 234 | 18 | simprd | |- ( ph -> A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 235 | 234 | ad2antrr | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 236 | elfzuz | |- ( j e. ( ( ( m - s ) + 1 ) ... m ) -> j e. ( ZZ>= ` ( ( m - s ) + 1 ) ) ) |
|
| 237 | eluzle | |- ( m e. ( ZZ>= ` ( s + t ) ) -> ( s + t ) <_ m ) |
|
| 238 | 237 | adantl | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( s + t ) <_ m ) |
| 239 | 19 | nn0zd | |- ( ph -> t e. ZZ ) |
| 240 | 239 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> t e. ZZ ) |
| 241 | 240 | zred | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> t e. RR ) |
| 242 | 58 241 57 | leaddsub2d | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( s + t ) <_ m <-> t <_ ( m - s ) ) ) |
| 243 | 238 242 | mpbid | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> t <_ ( m - s ) ) |
| 244 | eluz | |- ( ( t e. ZZ /\ ( m - s ) e. ZZ ) -> ( ( m - s ) e. ( ZZ>= ` t ) <-> t <_ ( m - s ) ) ) |
|
| 245 | 240 75 244 | syl2anc | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( m - s ) e. ( ZZ>= ` t ) <-> t <_ ( m - s ) ) ) |
| 246 | 243 245 | mpbird | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. ( ZZ>= ` t ) ) |
| 247 | peano2uz | |- ( ( m - s ) e. ( ZZ>= ` t ) -> ( ( m - s ) + 1 ) e. ( ZZ>= ` t ) ) |
|
| 248 | 246 247 | syl | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( m - s ) + 1 ) e. ( ZZ>= ` t ) ) |
| 249 | uztrn | |- ( ( j e. ( ZZ>= ` ( ( m - s ) + 1 ) ) /\ ( ( m - s ) + 1 ) e. ( ZZ>= ` t ) ) -> j e. ( ZZ>= ` t ) ) |
|
| 250 | 236 248 249 | syl2anr | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> j e. ( ZZ>= ` t ) ) |
| 251 | 233 235 250 | rspcdva | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( K ` j ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 252 | 231 251 | eqbrtrrd | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` A ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 253 | 229 230 252 | ltled | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` A ) <_ ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 254 | 213 | ad2antrr | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) |
| 255 | 57 | adantr | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> m e. RR ) |
| 256 | peano2zm | |- ( s e. ZZ -> ( s - 1 ) e. ZZ ) |
|
| 257 | 62 256 | syl | |- ( ph -> ( s - 1 ) e. ZZ ) |
| 258 | 257 | zred | |- ( ph -> ( s - 1 ) e. RR ) |
| 259 | 258 | ad2antrr | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( s - 1 ) e. RR ) |
| 260 | 228 | nn0red | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> j e. RR ) |
| 261 | 56 | zcnd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. CC ) |
| 262 | 58 | recnd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. CC ) |
| 263 | 1cnd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> 1 e. CC ) |
|
| 264 | 261 262 263 | subsubd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - ( s - 1 ) ) = ( ( m - s ) + 1 ) ) |
| 265 | 264 | adantr | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - ( s - 1 ) ) = ( ( m - s ) + 1 ) ) |
| 266 | elfzle1 | |- ( j e. ( ( ( m - s ) + 1 ) ... m ) -> ( ( m - s ) + 1 ) <_ j ) |
|
| 267 | 266 | adantl | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( m - s ) + 1 ) <_ j ) |
| 268 | 265 267 | eqbrtrd | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - ( s - 1 ) ) <_ j ) |
| 269 | 255 259 260 268 | subled | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - j ) <_ ( s - 1 ) ) |
| 270 | 96 26 | syl | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - j ) e. NN0 ) |
| 271 | 270 37 | eleqtrdi | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - j ) e. ( ZZ>= ` 0 ) ) |
| 272 | 257 | ad2antrr | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( s - 1 ) e. ZZ ) |
| 273 | elfz5 | |- ( ( ( m - j ) e. ( ZZ>= ` 0 ) /\ ( s - 1 ) e. ZZ ) -> ( ( m - j ) e. ( 0 ... ( s - 1 ) ) <-> ( m - j ) <_ ( s - 1 ) ) ) |
|
| 274 | 271 272 273 | syl2anc | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( m - j ) e. ( 0 ... ( s - 1 ) ) <-> ( m - j ) <_ ( s - 1 ) ) ) |
| 275 | 269 274 | mpbird | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - j ) e. ( 0 ... ( s - 1 ) ) ) |
| 276 | simplll | |- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ph ) |
|
| 277 | 96 29 | syldan | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( m - j ) + 1 ) e. NN0 ) |
| 278 | 277 32 | sylan | |- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) |
| 279 | 276 278 4 | syl2anc | |- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ( G ` k ) = B ) |
| 280 | 279 | sumeq2dv | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) |
| 281 | 280 | eqcomd | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) |
| 282 | 281 | fveq2d | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) ) |
| 283 | 135 | rspceeqv | |- ( ( ( m - j ) e. ( 0 ... ( s - 1 ) ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) ) -> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 284 | 275 282 283 | syl2anc | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 285 | fvex | |- ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. _V |
|
| 286 | eqeq1 | |- ( z = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) -> ( z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
|
| 287 | 286 | rexbidv | |- ( z = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) -> ( E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
| 288 | 285 287 10 | elab2 | |- ( ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. T <-> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 289 | 284 288 | sylibr | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. T ) |
| 290 | suprub | |- ( ( ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. T ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ sup ( T , RR , < ) ) |
|
| 291 | 254 289 290 | syl2anc | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ sup ( T , RR , < ) ) |
| 292 | 227 228 129 | syl2anc | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) |
| 293 | 96 84 | syldan | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR ) |
| 294 | 43 | absge0d | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> 0 <_ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 295 | 96 294 | syldan | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> 0 <_ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 296 | 293 295 | jca | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR /\ 0 <_ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) |
| 297 | 215 | ad2antrr | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> sup ( T , RR , < ) e. RR ) |
| 298 | lemul12a | |- ( ( ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) /\ ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) /\ ( ( ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR /\ 0 <_ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) /\ sup ( T , RR , < ) e. RR ) ) -> ( ( ( abs ` A ) <_ ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ sup ( T , RR , < ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) |
|
| 299 | 292 230 296 297 298 | syl22anc | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( ( abs ` A ) <_ ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ sup ( T , RR , < ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) |
| 300 | 253 291 299 | mp2and | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) |
| 301 | 88 97 226 300 | fsumle | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) |
| 302 | 225 | recnd | |- ( ph -> ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. CC ) |
| 303 | 302 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. CC ) |
| 304 | fsumconst | |- ( ( ( ( ( m - s ) + 1 ) ... m ) e. Fin /\ ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. CC ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) = ( ( # ` ( ( ( m - s ) + 1 ) ... m ) ) x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) |
|
| 305 | 88 303 304 | syl2anc | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) = ( ( # ` ( ( ( m - s ) + 1 ) ... m ) ) x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) |
| 306 | 1zzd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> 1 e. ZZ ) |
|
| 307 | 62 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. ZZ ) |
| 308 | fzen | |- ( ( 1 e. ZZ /\ s e. ZZ /\ ( m - s ) e. ZZ ) -> ( 1 ... s ) ~~ ( ( 1 + ( m - s ) ) ... ( s + ( m - s ) ) ) ) |
|
| 309 | 306 307 75 308 | syl3anc | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 1 ... s ) ~~ ( ( 1 + ( m - s ) ) ... ( s + ( m - s ) ) ) ) |
| 310 | ax-1cn | |- 1 e. CC |
|
| 311 | 75 | zcnd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. CC ) |
| 312 | addcom | |- ( ( 1 e. CC /\ ( m - s ) e. CC ) -> ( 1 + ( m - s ) ) = ( ( m - s ) + 1 ) ) |
|
| 313 | 310 311 312 | sylancr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 1 + ( m - s ) ) = ( ( m - s ) + 1 ) ) |
| 314 | 262 261 | pncan3d | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( s + ( m - s ) ) = m ) |
| 315 | 313 314 | oveq12d | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( 1 + ( m - s ) ) ... ( s + ( m - s ) ) ) = ( ( ( m - s ) + 1 ) ... m ) ) |
| 316 | 309 315 | breqtrd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 1 ... s ) ~~ ( ( ( m - s ) + 1 ) ... m ) ) |
| 317 | fzfid | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 1 ... s ) e. Fin ) |
|
| 318 | hashen | |- ( ( ( 1 ... s ) e. Fin /\ ( ( ( m - s ) + 1 ) ... m ) e. Fin ) -> ( ( # ` ( 1 ... s ) ) = ( # ` ( ( ( m - s ) + 1 ) ... m ) ) <-> ( 1 ... s ) ~~ ( ( ( m - s ) + 1 ) ... m ) ) ) |
|
| 319 | 317 88 318 | syl2anc | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( # ` ( 1 ... s ) ) = ( # ` ( ( ( m - s ) + 1 ) ... m ) ) <-> ( 1 ... s ) ~~ ( ( ( m - s ) + 1 ) ... m ) ) ) |
| 320 | 316 319 | mpbird | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( # ` ( 1 ... s ) ) = ( # ` ( ( ( m - s ) + 1 ) ... m ) ) ) |
| 321 | hashfz1 | |- ( s e. NN0 -> ( # ` ( 1 ... s ) ) = s ) |
|
| 322 | 53 321 | syl | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( # ` ( 1 ... s ) ) = s ) |
| 323 | 320 322 | eqtr3d | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( # ` ( ( ( m - s ) + 1 ) ... m ) ) = s ) |
| 324 | 323 | oveq1d | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( # ` ( ( ( m - s ) + 1 ) ... m ) ) x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) = ( s x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) |
| 325 | 215 | recnd | |- ( ph -> sup ( T , RR , < ) e. CC ) |
| 326 | 218 | rpcnne0d | |- ( ph -> ( ( sup ( T , RR , < ) + 1 ) e. CC /\ ( sup ( T , RR , < ) + 1 ) =/= 0 ) ) |
| 327 | div23 | |- ( ( ( E / 2 ) e. CC /\ sup ( T , RR , < ) e. CC /\ ( ( sup ( T , RR , < ) + 1 ) e. CC /\ ( sup ( T , RR , < ) + 1 ) =/= 0 ) ) -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) |
|
| 328 | 160 325 326 327 | syl3anc | |- ( ph -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) |
| 329 | 62 | zcnd | |- ( ph -> s e. CC ) |
| 330 | 222 | rpcnd | |- ( ph -> ( ( E / 2 ) / s ) e. CC ) |
| 331 | divass | |- ( ( s e. CC /\ ( ( E / 2 ) / s ) e. CC /\ ( ( sup ( T , RR , < ) + 1 ) e. CC /\ ( sup ( T , RR , < ) + 1 ) =/= 0 ) ) -> ( ( s x. ( ( E / 2 ) / s ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
|
| 332 | 329 330 326 331 | syl3anc | |- ( ph -> ( ( s x. ( ( E / 2 ) / s ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
| 333 | 16 | nnne0d | |- ( ph -> s =/= 0 ) |
| 334 | 160 329 333 | divcan2d | |- ( ph -> ( s x. ( ( E / 2 ) / s ) ) = ( E / 2 ) ) |
| 335 | 334 | oveq1d | |- ( ph -> ( ( s x. ( ( E / 2 ) / s ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 336 | 332 335 | eqtr3d | |- ( ph -> ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) = ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 337 | 336 | oveq1d | |- ( ph -> ( ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) x. sup ( T , RR , < ) ) = ( ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) |
| 338 | 223 | rpcnd | |- ( ph -> ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. CC ) |
| 339 | 329 338 325 | mulassd | |- ( ph -> ( ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) x. sup ( T , RR , < ) ) = ( s x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) |
| 340 | 328 337 339 | 3eqtr2rd | |- ( ph -> ( s x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) = ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 341 | 340 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( s x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) = ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 342 | 305 324 341 | 3eqtrd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) = ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 343 | 301 342 | breqtrd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 344 | peano2re | |- ( sup ( T , RR , < ) e. RR -> ( sup ( T , RR , < ) + 1 ) e. RR ) |
|
| 345 | 215 344 | syl | |- ( ph -> ( sup ( T , RR , < ) + 1 ) e. RR ) |
| 346 | 215 | ltp1d | |- ( ph -> sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) |
| 347 | 215 345 99 346 | ltmul2dd | |- ( ph -> ( ( E / 2 ) x. sup ( T , RR , < ) ) < ( ( E / 2 ) x. ( sup ( T , RR , < ) + 1 ) ) ) |
| 348 | 216 100 218 | ltdivmul2d | |- ( ph -> ( ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) < ( E / 2 ) <-> ( ( E / 2 ) x. sup ( T , RR , < ) ) < ( ( E / 2 ) x. ( sup ( T , RR , < ) + 1 ) ) ) ) |
| 349 | 347 348 | mpbird | |- ( ph -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) < ( E / 2 ) ) |
| 350 | 349 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) < ( E / 2 ) ) |
| 351 | 98 220 101 343 350 | lelttrd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < ( E / 2 ) ) |
| 352 | 87 98 101 101 212 351 | lt2addd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) + sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) < ( ( E / 2 ) + ( E / 2 ) ) ) |
| 353 | 24 43 | absmuld | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) = ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) |
| 354 | 353 | sumeq2dv | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) = sum_ j e. ( 0 ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) |
| 355 | 75 | zred | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. RR ) |
| 356 | 355 | ltp1d | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) < ( ( m - s ) + 1 ) ) |
| 357 | fzdisj | |- ( ( m - s ) < ( ( m - s ) + 1 ) -> ( ( 0 ... ( m - s ) ) i^i ( ( ( m - s ) + 1 ) ... m ) ) = (/) ) |
|
| 358 | 356 357 | syl | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( 0 ... ( m - s ) ) i^i ( ( ( m - s ) + 1 ) ... m ) ) = (/) ) |
| 359 | fzsplit | |- ( ( m - s ) e. ( 0 ... m ) -> ( 0 ... m ) = ( ( 0 ... ( m - s ) ) u. ( ( ( m - s ) + 1 ) ... m ) ) ) |
|
| 360 | 73 359 | syl | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... m ) = ( ( 0 ... ( m - s ) ) u. ( ( ( m - s ) + 1 ) ... m ) ) ) |
| 361 | 85 | recnd | |- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. CC ) |
| 362 | 358 360 21 361 | fsumsplit | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) = ( sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) + sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) ) |
| 363 | 354 362 | eqtr2d | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) + sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) = sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) |
| 364 | 9 | rpcnd | |- ( ph -> E e. CC ) |
| 365 | 364 | adantr | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> E e. CC ) |
| 366 | 365 | 2halvesd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( E / 2 ) + ( E / 2 ) ) = E ) |
| 367 | 352 363 366 | 3brtr3d | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |
| 368 | 46 48 50 51 367 | lelttrd | |- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |
| 369 | 368 | ralrimiva | |- ( ph -> A. m e. ( ZZ>= ` ( s + t ) ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |
| 370 | fveq2 | |- ( y = ( s + t ) -> ( ZZ>= ` y ) = ( ZZ>= ` ( s + t ) ) ) |
|
| 371 | 370 | raleqdv | |- ( y = ( s + t ) -> ( A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E <-> A. m e. ( ZZ>= ` ( s + t ) ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) |
| 372 | 371 | rspcev | |- ( ( ( s + t ) e. NN0 /\ A. m e. ( ZZ>= ` ( s + t ) ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |
| 373 | 20 369 372 | syl2anc | |- ( ph -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |