This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mertens' theorem. If A ( j ) is an absolutely convergent series and B ( k ) is convergent, then ( sum_ j e. NN0 A ( j ) x. sum_ k e. NN0 B ( k ) ) = sum_ k e. NN0 sum_ j e. ( 0 ... k ) ( A ( j ) x. B ( k - j ) ) (and this latter series is convergent). This latter sum is commonly known as the Cauchy product of the sequences. The proof follows the outline at http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem . (Contributed by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mertens.1 | |- ( ( ph /\ j e. NN0 ) -> ( F ` j ) = A ) |
|
| mertens.2 | |- ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) |
||
| mertens.3 | |- ( ( ph /\ j e. NN0 ) -> A e. CC ) |
||
| mertens.4 | |- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = B ) |
||
| mertens.5 | |- ( ( ph /\ k e. NN0 ) -> B e. CC ) |
||
| mertens.6 | |- ( ( ph /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
||
| mertens.7 | |- ( ph -> seq 0 ( + , K ) e. dom ~~> ) |
||
| mertens.8 | |- ( ph -> seq 0 ( + , G ) e. dom ~~> ) |
||
| Assertion | mertens | |- ( ph -> seq 0 ( + , H ) ~~> ( sum_ j e. NN0 A x. sum_ k e. NN0 B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mertens.1 | |- ( ( ph /\ j e. NN0 ) -> ( F ` j ) = A ) |
|
| 2 | mertens.2 | |- ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) |
|
| 3 | mertens.3 | |- ( ( ph /\ j e. NN0 ) -> A e. CC ) |
|
| 4 | mertens.4 | |- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = B ) |
|
| 5 | mertens.5 | |- ( ( ph /\ k e. NN0 ) -> B e. CC ) |
|
| 6 | mertens.6 | |- ( ( ph /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
|
| 7 | mertens.7 | |- ( ph -> seq 0 ( + , K ) e. dom ~~> ) |
|
| 8 | mertens.8 | |- ( ph -> seq 0 ( + , G ) e. dom ~~> ) |
|
| 9 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 10 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 11 | seqex | |- seq 0 ( + , H ) e. _V |
|
| 12 | 11 | a1i | |- ( ph -> seq 0 ( + , H ) e. _V ) |
| 13 | fzfid | |- ( ( ph /\ k e. NN0 ) -> ( 0 ... k ) e. Fin ) |
|
| 14 | simpl | |- ( ( ph /\ k e. NN0 ) -> ph ) |
|
| 15 | elfznn0 | |- ( j e. ( 0 ... k ) -> j e. NN0 ) |
|
| 16 | 14 15 3 | syl2an | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> A e. CC ) |
| 17 | fveq2 | |- ( i = ( k - j ) -> ( G ` i ) = ( G ` ( k - j ) ) ) |
|
| 18 | 17 | eleq1d | |- ( i = ( k - j ) -> ( ( G ` i ) e. CC <-> ( G ` ( k - j ) ) e. CC ) ) |
| 19 | 4 5 | eqeltrd | |- ( ( ph /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
| 20 | 19 | ralrimiva | |- ( ph -> A. k e. NN0 ( G ` k ) e. CC ) |
| 21 | fveq2 | |- ( k = i -> ( G ` k ) = ( G ` i ) ) |
|
| 22 | 21 | eleq1d | |- ( k = i -> ( ( G ` k ) e. CC <-> ( G ` i ) e. CC ) ) |
| 23 | 22 | cbvralvw | |- ( A. k e. NN0 ( G ` k ) e. CC <-> A. i e. NN0 ( G ` i ) e. CC ) |
| 24 | 20 23 | sylib | |- ( ph -> A. i e. NN0 ( G ` i ) e. CC ) |
| 25 | 24 | ad2antrr | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> A. i e. NN0 ( G ` i ) e. CC ) |
| 26 | fznn0sub | |- ( j e. ( 0 ... k ) -> ( k - j ) e. NN0 ) |
|
| 27 | 26 | adantl | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( k - j ) e. NN0 ) |
| 28 | 18 25 27 | rspcdva | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( G ` ( k - j ) ) e. CC ) |
| 29 | 16 28 | mulcld | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( A x. ( G ` ( k - j ) ) ) e. CC ) |
| 30 | 13 29 | fsumcl | |- ( ( ph /\ k e. NN0 ) -> sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) e. CC ) |
| 31 | 6 30 | eqeltrd | |- ( ( ph /\ k e. NN0 ) -> ( H ` k ) e. CC ) |
| 32 | 9 10 31 | serf | |- ( ph -> seq 0 ( + , H ) : NN0 --> CC ) |
| 33 | 32 | ffvelcdmda | |- ( ( ph /\ m e. NN0 ) -> ( seq 0 ( + , H ) ` m ) e. CC ) |
| 34 | 1 | adantlr | |- ( ( ( ph /\ x e. RR+ ) /\ j e. NN0 ) -> ( F ` j ) = A ) |
| 35 | 2 | adantlr | |- ( ( ( ph /\ x e. RR+ ) /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) |
| 36 | 3 | adantlr | |- ( ( ( ph /\ x e. RR+ ) /\ j e. NN0 ) -> A e. CC ) |
| 37 | 4 | adantlr | |- ( ( ( ph /\ x e. RR+ ) /\ k e. NN0 ) -> ( G ` k ) = B ) |
| 38 | 5 | adantlr | |- ( ( ( ph /\ x e. RR+ ) /\ k e. NN0 ) -> B e. CC ) |
| 39 | 6 | adantlr | |- ( ( ( ph /\ x e. RR+ ) /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
| 40 | 7 | adantr | |- ( ( ph /\ x e. RR+ ) -> seq 0 ( + , K ) e. dom ~~> ) |
| 41 | 8 | adantr | |- ( ( ph /\ x e. RR+ ) -> seq 0 ( + , G ) e. dom ~~> ) |
| 42 | simpr | |- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
|
| 43 | fveq2 | |- ( l = k -> ( G ` l ) = ( G ` k ) ) |
|
| 44 | 43 | cbvsumv | |- sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) = sum_ k e. ( ZZ>= ` ( i + 1 ) ) ( G ` k ) |
| 45 | fvoveq1 | |- ( i = n -> ( ZZ>= ` ( i + 1 ) ) = ( ZZ>= ` ( n + 1 ) ) ) |
|
| 46 | 45 | sumeq1d | |- ( i = n -> sum_ k e. ( ZZ>= ` ( i + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) |
| 47 | 44 46 | eqtrid | |- ( i = n -> sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) = sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) |
| 48 | 47 | fveq2d | |- ( i = n -> ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 49 | 48 | eqeq2d | |- ( i = n -> ( u = ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) <-> u = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
| 50 | 49 | cbvrexvw | |- ( E. i e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) <-> E. n e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 51 | eqeq1 | |- ( u = z -> ( u = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
|
| 52 | 51 | rexbidv | |- ( u = z -> ( E. n e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
| 53 | 50 52 | bitrid | |- ( u = z -> ( E. i e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) <-> E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
| 54 | 53 | cbvabv | |- { u | E. i e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) } = { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } |
| 55 | fveq2 | |- ( i = j -> ( K ` i ) = ( K ` j ) ) |
|
| 56 | 55 | cbvsumv | |- sum_ i e. NN0 ( K ` i ) = sum_ j e. NN0 ( K ` j ) |
| 57 | 56 | oveq1i | |- ( sum_ i e. NN0 ( K ` i ) + 1 ) = ( sum_ j e. NN0 ( K ` j ) + 1 ) |
| 58 | 57 | oveq2i | |- ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) = ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) |
| 59 | 58 | breq2i | |- ( ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) <-> ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 60 | fveq2 | |- ( i = k -> ( G ` i ) = ( G ` k ) ) |
|
| 61 | 60 | cbvsumv | |- sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) = sum_ k e. ( ZZ>= ` ( u + 1 ) ) ( G ` k ) |
| 62 | fvoveq1 | |- ( u = n -> ( ZZ>= ` ( u + 1 ) ) = ( ZZ>= ` ( n + 1 ) ) ) |
|
| 63 | 62 | sumeq1d | |- ( u = n -> sum_ k e. ( ZZ>= ` ( u + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) |
| 64 | 61 63 | eqtrid | |- ( u = n -> sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) = sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) |
| 65 | 64 | fveq2d | |- ( u = n -> ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 66 | 65 | breq1d | |- ( u = n -> ( ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 67 | 59 66 | bitrid | |- ( u = n -> ( ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 68 | 67 | cbvralvw | |- ( A. u e. ( ZZ>= ` s ) ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) <-> A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 69 | 68 | anbi2i | |- ( ( s e. NN /\ A. u e. ( ZZ>= ` s ) ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) ) <-> ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 70 | 34 35 36 37 38 39 40 41 42 54 69 | mertenslem2 | |- ( ( ph /\ x e. RR+ ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) |
| 71 | eluznn0 | |- ( ( y e. NN0 /\ m e. ( ZZ>= ` y ) ) -> m e. NN0 ) |
|
| 72 | fzfid | |- ( ( ph /\ m e. NN0 ) -> ( 0 ... m ) e. Fin ) |
|
| 73 | simpll | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ph ) |
|
| 74 | elfznn0 | |- ( j e. ( 0 ... m ) -> j e. NN0 ) |
|
| 75 | 74 | adantl | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> j e. NN0 ) |
| 76 | 9 10 4 5 8 | isumcl | |- ( ph -> sum_ k e. NN0 B e. CC ) |
| 77 | 76 | adantr | |- ( ( ph /\ j e. NN0 ) -> sum_ k e. NN0 B e. CC ) |
| 78 | 1 3 | eqeltrd | |- ( ( ph /\ j e. NN0 ) -> ( F ` j ) e. CC ) |
| 79 | 77 78 | mulcld | |- ( ( ph /\ j e. NN0 ) -> ( sum_ k e. NN0 B x. ( F ` j ) ) e. CC ) |
| 80 | 73 75 79 | syl2anc | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( sum_ k e. NN0 B x. ( F ` j ) ) e. CC ) |
| 81 | fzfid | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( 0 ... ( m - j ) ) e. Fin ) |
|
| 82 | simplll | |- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> ph ) |
|
| 83 | 74 | ad2antlr | |- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> j e. NN0 ) |
| 84 | 82 83 3 | syl2anc | |- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> A e. CC ) |
| 85 | elfznn0 | |- ( k e. ( 0 ... ( m - j ) ) -> k e. NN0 ) |
|
| 86 | 85 | adantl | |- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> k e. NN0 ) |
| 87 | 82 86 19 | syl2anc | |- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> ( G ` k ) e. CC ) |
| 88 | 84 87 | mulcld | |- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> ( A x. ( G ` k ) ) e. CC ) |
| 89 | 81 88 | fsumcl | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) e. CC ) |
| 90 | 72 80 89 | fsumsub | |- ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) ( ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) = ( sum_ j e. ( 0 ... m ) ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ j e. ( 0 ... m ) sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) ) |
| 91 | 73 75 3 | syl2anc | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> A e. CC ) |
| 92 | 76 | ad2antrr | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. NN0 B e. CC ) |
| 93 | 81 87 | fsumcl | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) e. CC ) |
| 94 | 91 92 93 | subdid | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( A x. ( sum_ k e. NN0 B - sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) ) = ( ( A x. sum_ k e. NN0 B ) - ( A x. sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) ) ) |
| 95 | eqid | |- ( ZZ>= ` ( ( m - j ) + 1 ) ) = ( ZZ>= ` ( ( m - j ) + 1 ) ) |
|
| 96 | fznn0sub | |- ( j e. ( 0 ... m ) -> ( m - j ) e. NN0 ) |
|
| 97 | 96 | adantl | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( m - j ) e. NN0 ) |
| 98 | peano2nn0 | |- ( ( m - j ) e. NN0 -> ( ( m - j ) + 1 ) e. NN0 ) |
|
| 99 | 97 98 | syl | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( m - j ) + 1 ) e. NN0 ) |
| 100 | 99 | nn0zd | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( m - j ) + 1 ) e. ZZ ) |
| 101 | simplll | |- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ph ) |
|
| 102 | eluznn0 | |- ( ( ( ( m - j ) + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) |
|
| 103 | 99 102 | sylan | |- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) |
| 104 | 101 103 4 | syl2anc | |- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ( G ` k ) = B ) |
| 105 | 101 103 5 | syl2anc | |- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> B e. CC ) |
| 106 | 8 | ad2antrr | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> seq 0 ( + , G ) e. dom ~~> ) |
| 107 | 73 4 | sylan | |- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. NN0 ) -> ( G ` k ) = B ) |
| 108 | 73 5 | sylan | |- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. NN0 ) -> B e. CC ) |
| 109 | 107 108 | eqeltrd | |- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
| 110 | 9 99 109 | iserex | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( seq 0 ( + , G ) e. dom ~~> <-> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) ) |
| 111 | 106 110 | mpbid | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) |
| 112 | 95 100 104 105 111 | isumcl | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B e. CC ) |
| 113 | 9 95 99 107 108 106 | isumsplit | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. NN0 B = ( sum_ k e. ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) B + sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 114 | 97 | nn0cnd | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( m - j ) e. CC ) |
| 115 | ax-1cn | |- 1 e. CC |
|
| 116 | pncan | |- ( ( ( m - j ) e. CC /\ 1 e. CC ) -> ( ( ( m - j ) + 1 ) - 1 ) = ( m - j ) ) |
|
| 117 | 114 115 116 | sylancl | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( ( m - j ) + 1 ) - 1 ) = ( m - j ) ) |
| 118 | 117 | oveq2d | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) = ( 0 ... ( m - j ) ) ) |
| 119 | 118 | sumeq1d | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) B = sum_ k e. ( 0 ... ( m - j ) ) B ) |
| 120 | 82 86 4 | syl2anc | |- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> ( G ` k ) = B ) |
| 121 | 120 | sumeq2dv | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) = sum_ k e. ( 0 ... ( m - j ) ) B ) |
| 122 | 119 121 | eqtr4d | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) B = sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) |
| 123 | 122 | oveq1d | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( sum_ k e. ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) B + sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) + sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 124 | 113 123 | eqtrd | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. NN0 B = ( sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) + sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 125 | 93 112 124 | mvrladdd | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( sum_ k e. NN0 B - sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) |
| 126 | 125 | oveq2d | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( A x. ( sum_ k e. NN0 B - sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) ) = ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 127 | 3 77 | mulcomd | |- ( ( ph /\ j e. NN0 ) -> ( A x. sum_ k e. NN0 B ) = ( sum_ k e. NN0 B x. A ) ) |
| 128 | 1 | oveq2d | |- ( ( ph /\ j e. NN0 ) -> ( sum_ k e. NN0 B x. ( F ` j ) ) = ( sum_ k e. NN0 B x. A ) ) |
| 129 | 127 128 | eqtr4d | |- ( ( ph /\ j e. NN0 ) -> ( A x. sum_ k e. NN0 B ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) |
| 130 | 73 75 129 | syl2anc | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( A x. sum_ k e. NN0 B ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) |
| 131 | 81 91 87 | fsummulc2 | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( A x. sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) = sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) |
| 132 | 130 131 | oveq12d | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( A x. sum_ k e. NN0 B ) - ( A x. sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) ) = ( ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) ) |
| 133 | 94 126 132 | 3eqtr3rd | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) = ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 134 | 133 | sumeq2dv | |- ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) ( ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) = sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 135 | fveq2 | |- ( n = j -> ( F ` n ) = ( F ` j ) ) |
|
| 136 | 135 | oveq2d | |- ( n = j -> ( sum_ k e. NN0 B x. ( F ` n ) ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) |
| 137 | eqid | |- ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) = ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) |
|
| 138 | ovex | |- ( sum_ k e. NN0 B x. ( F ` j ) ) e. _V |
|
| 139 | 136 137 138 | fvmpt | |- ( j e. NN0 -> ( ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ` j ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) |
| 140 | 75 139 | syl | |- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ` j ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) |
| 141 | simpr | |- ( ( ph /\ m e. NN0 ) -> m e. NN0 ) |
|
| 142 | 141 9 | eleqtrdi | |- ( ( ph /\ m e. NN0 ) -> m e. ( ZZ>= ` 0 ) ) |
| 143 | 140 142 80 | fsumser | |- ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) ( sum_ k e. NN0 B x. ( F ` j ) ) = ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) ) |
| 144 | fveq2 | |- ( n = k -> ( G ` n ) = ( G ` k ) ) |
|
| 145 | 144 | oveq2d | |- ( n = k -> ( A x. ( G ` n ) ) = ( A x. ( G ` k ) ) ) |
| 146 | fveq2 | |- ( n = ( k - j ) -> ( G ` n ) = ( G ` ( k - j ) ) ) |
|
| 147 | 146 | oveq2d | |- ( n = ( k - j ) -> ( A x. ( G ` n ) ) = ( A x. ( G ` ( k - j ) ) ) ) |
| 148 | 88 | anasss | |- ( ( ( ph /\ m e. NN0 ) /\ ( j e. ( 0 ... m ) /\ k e. ( 0 ... ( m - j ) ) ) ) -> ( A x. ( G ` k ) ) e. CC ) |
| 149 | 145 147 148 | fsum0diag2 | |- ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) = sum_ k e. ( 0 ... m ) sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
| 150 | simpll | |- ( ( ( ph /\ m e. NN0 ) /\ k e. ( 0 ... m ) ) -> ph ) |
|
| 151 | elfznn0 | |- ( k e. ( 0 ... m ) -> k e. NN0 ) |
|
| 152 | 151 | adantl | |- ( ( ( ph /\ m e. NN0 ) /\ k e. ( 0 ... m ) ) -> k e. NN0 ) |
| 153 | 150 152 6 | syl2anc | |- ( ( ( ph /\ m e. NN0 ) /\ k e. ( 0 ... m ) ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
| 154 | 150 152 30 | syl2anc | |- ( ( ( ph /\ m e. NN0 ) /\ k e. ( 0 ... m ) ) -> sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) e. CC ) |
| 155 | 153 142 154 | fsumser | |- ( ( ph /\ m e. NN0 ) -> sum_ k e. ( 0 ... m ) sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) = ( seq 0 ( + , H ) ` m ) ) |
| 156 | 149 155 | eqtrd | |- ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) = ( seq 0 ( + , H ) ` m ) ) |
| 157 | 143 156 | oveq12d | |- ( ( ph /\ m e. NN0 ) -> ( sum_ j e. ( 0 ... m ) ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ j e. ( 0 ... m ) sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) = ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) |
| 158 | 90 134 157 | 3eqtr3rd | |- ( ( ph /\ m e. NN0 ) -> ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) = sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 159 | 158 | fveq2d | |- ( ( ph /\ m e. NN0 ) -> ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) = ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) |
| 160 | 159 | breq1d | |- ( ( ph /\ m e. NN0 ) -> ( ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) |
| 161 | 71 160 | sylan2 | |- ( ( ph /\ ( y e. NN0 /\ m e. ( ZZ>= ` y ) ) ) -> ( ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) |
| 162 | 161 | anassrs | |- ( ( ( ph /\ y e. NN0 ) /\ m e. ( ZZ>= ` y ) ) -> ( ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) |
| 163 | 162 | ralbidva | |- ( ( ph /\ y e. NN0 ) -> ( A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) |
| 164 | 163 | rexbidva | |- ( ph -> ( E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) |
| 165 | 164 | adantr | |- ( ( ph /\ x e. RR+ ) -> ( E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) |
| 166 | 70 165 | mpbird | |- ( ( ph /\ x e. RR+ ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x ) |
| 167 | 166 | ralrimiva | |- ( ph -> A. x e. RR+ E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x ) |
| 168 | 1 | fveq2d | |- ( ( ph /\ j e. NN0 ) -> ( abs ` ( F ` j ) ) = ( abs ` A ) ) |
| 169 | 2 168 | eqtr4d | |- ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( abs ` ( F ` j ) ) ) |
| 170 | 9 10 169 78 7 | abscvgcvg | |- ( ph -> seq 0 ( + , F ) e. dom ~~> ) |
| 171 | 9 10 1 3 170 | isumclim2 | |- ( ph -> seq 0 ( + , F ) ~~> sum_ j e. NN0 A ) |
| 172 | 78 | ralrimiva | |- ( ph -> A. j e. NN0 ( F ` j ) e. CC ) |
| 173 | fveq2 | |- ( j = m -> ( F ` j ) = ( F ` m ) ) |
|
| 174 | 173 | eleq1d | |- ( j = m -> ( ( F ` j ) e. CC <-> ( F ` m ) e. CC ) ) |
| 175 | 174 | rspccva | |- ( ( A. j e. NN0 ( F ` j ) e. CC /\ m e. NN0 ) -> ( F ` m ) e. CC ) |
| 176 | 172 175 | sylan | |- ( ( ph /\ m e. NN0 ) -> ( F ` m ) e. CC ) |
| 177 | fveq2 | |- ( n = m -> ( F ` n ) = ( F ` m ) ) |
|
| 178 | 177 | oveq2d | |- ( n = m -> ( sum_ k e. NN0 B x. ( F ` n ) ) = ( sum_ k e. NN0 B x. ( F ` m ) ) ) |
| 179 | ovex | |- ( sum_ k e. NN0 B x. ( F ` m ) ) e. _V |
|
| 180 | 178 137 179 | fvmpt | |- ( m e. NN0 -> ( ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ` m ) = ( sum_ k e. NN0 B x. ( F ` m ) ) ) |
| 181 | 180 | adantl | |- ( ( ph /\ m e. NN0 ) -> ( ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ` m ) = ( sum_ k e. NN0 B x. ( F ` m ) ) ) |
| 182 | 9 10 76 171 176 181 | isermulc2 | |- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ~~> ( sum_ k e. NN0 B x. sum_ j e. NN0 A ) ) |
| 183 | 9 10 1 3 170 | isumcl | |- ( ph -> sum_ j e. NN0 A e. CC ) |
| 184 | 76 183 | mulcomd | |- ( ph -> ( sum_ k e. NN0 B x. sum_ j e. NN0 A ) = ( sum_ j e. NN0 A x. sum_ k e. NN0 B ) ) |
| 185 | 182 184 | breqtrd | |- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ~~> ( sum_ j e. NN0 A x. sum_ k e. NN0 B ) ) |
| 186 | 9 10 12 33 167 185 | 2clim | |- ( ph -> seq 0 ( + , H ) ~~> ( sum_ j e. NN0 A x. sum_ k e. NN0 B ) ) |