This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lemul2a | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( C x. A ) <_ ( C x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lemul1a | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( A x. C ) <_ ( B x. C ) ) |
|
| 2 | recn | |- ( A e. RR -> A e. CC ) |
|
| 3 | recn | |- ( C e. RR -> C e. CC ) |
|
| 4 | mulcom | |- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) |
|
| 5 | 2 3 4 | syl2an | |- ( ( A e. RR /\ C e. RR ) -> ( A x. C ) = ( C x. A ) ) |
| 6 | 5 | adantrr | |- ( ( A e. RR /\ ( C e. RR /\ 0 <_ C ) ) -> ( A x. C ) = ( C x. A ) ) |
| 7 | 6 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) -> ( A x. C ) = ( C x. A ) ) |
| 8 | 7 | adantr | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( A x. C ) = ( C x. A ) ) |
| 9 | recn | |- ( B e. RR -> B e. CC ) |
|
| 10 | mulcom | |- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
|
| 11 | 9 3 10 | syl2an | |- ( ( B e. RR /\ C e. RR ) -> ( B x. C ) = ( C x. B ) ) |
| 12 | 11 | adantrr | |- ( ( B e. RR /\ ( C e. RR /\ 0 <_ C ) ) -> ( B x. C ) = ( C x. B ) ) |
| 13 | 12 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) -> ( B x. C ) = ( C x. B ) ) |
| 14 | 13 | adantr | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( B x. C ) = ( C x. B ) ) |
| 15 | 1 8 14 | 3brtr3d | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( C x. A ) <_ ( C x. B ) ) |