This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An associative law for division. (Contributed by NM, 2-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divass | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. B ) / C ) = ( A x. ( B / C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reccl | |- ( ( C e. CC /\ C =/= 0 ) -> ( 1 / C ) e. CC ) |
|
| 2 | mulass | |- ( ( A e. CC /\ B e. CC /\ ( 1 / C ) e. CC ) -> ( ( A x. B ) x. ( 1 / C ) ) = ( A x. ( B x. ( 1 / C ) ) ) ) |
|
| 3 | 1 2 | syl3an3 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. B ) x. ( 1 / C ) ) = ( A x. ( B x. ( 1 / C ) ) ) ) |
| 4 | mulcl | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
|
| 5 | 4 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A x. B ) e. CC ) |
| 6 | simp3l | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) |
|
| 7 | simp3r | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C =/= 0 ) |
|
| 8 | divrec | |- ( ( ( A x. B ) e. CC /\ C e. CC /\ C =/= 0 ) -> ( ( A x. B ) / C ) = ( ( A x. B ) x. ( 1 / C ) ) ) |
|
| 9 | 5 6 7 8 | syl3anc | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. B ) / C ) = ( ( A x. B ) x. ( 1 / C ) ) ) |
| 10 | simp2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC ) |
|
| 11 | divrec | |- ( ( B e. CC /\ C e. CC /\ C =/= 0 ) -> ( B / C ) = ( B x. ( 1 / C ) ) ) |
|
| 12 | 10 6 7 11 | syl3anc | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B / C ) = ( B x. ( 1 / C ) ) ) |
| 13 | 12 | oveq2d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A x. ( B / C ) ) = ( A x. ( B x. ( 1 / C ) ) ) ) |
| 14 | 3 9 13 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. B ) / C ) = ( A x. ( B / C ) ) ) |