This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumrecl.1 | |- Z = ( ZZ>= ` M ) |
|
| isumrecl.2 | |- ( ph -> M e. ZZ ) |
||
| isumrecl.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
||
| isumrecl.4 | |- ( ( ph /\ k e. Z ) -> A e. RR ) |
||
| isumrecl.5 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
||
| isumge0.6 | |- ( ( ph /\ k e. Z ) -> 0 <_ A ) |
||
| Assertion | isumge0 | |- ( ph -> 0 <_ sum_ k e. Z A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumrecl.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | isumrecl.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | isumrecl.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
|
| 4 | isumrecl.4 | |- ( ( ph /\ k e. Z ) -> A e. RR ) |
|
| 5 | isumrecl.5 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
|
| 6 | isumge0.6 | |- ( ( ph /\ k e. Z ) -> 0 <_ A ) |
|
| 7 | 4 | recnd | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
| 8 | 1 2 3 7 5 | isumclim2 | |- ( ph -> seq M ( + , F ) ~~> sum_ k e. Z A ) |
| 9 | fveq2 | |- ( j = k -> ( F ` j ) = ( F ` k ) ) |
|
| 10 | 9 | cbvsumv | |- sum_ j e. Z ( F ` j ) = sum_ k e. Z ( F ` k ) |
| 11 | 3 | sumeq2dv | |- ( ph -> sum_ k e. Z ( F ` k ) = sum_ k e. Z A ) |
| 12 | 10 11 | eqtrid | |- ( ph -> sum_ j e. Z ( F ` j ) = sum_ k e. Z A ) |
| 13 | 8 12 | breqtrrd | |- ( ph -> seq M ( + , F ) ~~> sum_ j e. Z ( F ` j ) ) |
| 14 | 3 4 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 15 | 6 3 | breqtrrd | |- ( ( ph /\ k e. Z ) -> 0 <_ ( F ` k ) ) |
| 16 | 1 2 13 14 15 | iserge0 | |- ( ph -> 0 <_ sum_ j e. Z ( F ` j ) ) |
| 17 | 16 12 | breqtrd | |- ( ph -> 0 <_ sum_ k e. Z A ) |