This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsummulc2.1 | |- ( ph -> A e. Fin ) |
|
| fsummulc2.2 | |- ( ph -> C e. CC ) |
||
| fsummulc2.3 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| Assertion | fsummulc1 | |- ( ph -> ( sum_ k e. A B x. C ) = sum_ k e. A ( B x. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsummulc2.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fsummulc2.2 | |- ( ph -> C e. CC ) |
|
| 3 | fsummulc2.3 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 4 | 1 2 3 | fsummulc2 | |- ( ph -> ( C x. sum_ k e. A B ) = sum_ k e. A ( C x. B ) ) |
| 5 | 1 3 | fsumcl | |- ( ph -> sum_ k e. A B e. CC ) |
| 6 | 5 2 | mulcomd | |- ( ph -> ( sum_ k e. A B x. C ) = ( C x. sum_ k e. A B ) ) |
| 7 | 2 | adantr | |- ( ( ph /\ k e. A ) -> C e. CC ) |
| 8 | 3 7 | mulcomd | |- ( ( ph /\ k e. A ) -> ( B x. C ) = ( C x. B ) ) |
| 9 | 8 | sumeq2dv | |- ( ph -> sum_ k e. A ( B x. C ) = sum_ k e. A ( C x. B ) ) |
| 10 | 4 6 9 | 3eqtr4d | |- ( ph -> ( sum_ k e. A B x. C ) = sum_ k e. A ( B x. C ) ) |