This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | peano2uz | |- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> M e. ZZ ) |
|
| 2 | peano2z | |- ( N e. ZZ -> ( N + 1 ) e. ZZ ) |
|
| 3 | 2 | 3ad2ant2 | |- ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> ( N + 1 ) e. ZZ ) |
| 4 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 5 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 6 | letrp1 | |- ( ( M e. RR /\ N e. RR /\ M <_ N ) -> M <_ ( N + 1 ) ) |
|
| 7 | 5 6 | syl3an2 | |- ( ( M e. RR /\ N e. ZZ /\ M <_ N ) -> M <_ ( N + 1 ) ) |
| 8 | 4 7 | syl3an1 | |- ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> M <_ ( N + 1 ) ) |
| 9 | 1 3 8 | 3jca | |- ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> ( M e. ZZ /\ ( N + 1 ) e. ZZ /\ M <_ ( N + 1 ) ) ) |
| 10 | eluz2 | |- ( N e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ N e. ZZ /\ M <_ N ) ) |
|
| 11 | eluz2 | |- ( ( N + 1 ) e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ ( N + 1 ) e. ZZ /\ M <_ ( N + 1 ) ) ) |
|
| 12 | 9 10 11 | 3imtr4i | |- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |