This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uztrn | |- ( ( M e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` N ) ) -> M e. ( ZZ>= ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 | |- ( K e. ( ZZ>= ` N ) -> N e. ZZ ) |
|
| 2 | 1 | adantl | |- ( ( M e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` N ) ) -> N e. ZZ ) |
| 3 | eluzelz | |- ( M e. ( ZZ>= ` K ) -> M e. ZZ ) |
|
| 4 | 3 | adantr | |- ( ( M e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` N ) ) -> M e. ZZ ) |
| 5 | eluzle | |- ( K e. ( ZZ>= ` N ) -> N <_ K ) |
|
| 6 | 5 | adantl | |- ( ( M e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` N ) ) -> N <_ K ) |
| 7 | eluzle | |- ( M e. ( ZZ>= ` K ) -> K <_ M ) |
|
| 8 | 7 | adantr | |- ( ( M e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` N ) ) -> K <_ M ) |
| 9 | eluzelz | |- ( K e. ( ZZ>= ` N ) -> K e. ZZ ) |
|
| 10 | zletr | |- ( ( N e. ZZ /\ K e. ZZ /\ M e. ZZ ) -> ( ( N <_ K /\ K <_ M ) -> N <_ M ) ) |
|
| 11 | 1 9 4 10 | syl2an23an | |- ( ( M e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` N ) ) -> ( ( N <_ K /\ K <_ M ) -> N <_ M ) ) |
| 12 | 6 8 11 | mp2and | |- ( ( M e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` N ) ) -> N <_ M ) |
| 13 | eluz2 | |- ( M e. ( ZZ>= ` N ) <-> ( N e. ZZ /\ M e. ZZ /\ N <_ M ) ) |
|
| 14 | 2 4 12 13 | syl3anbrc | |- ( ( M e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` N ) ) -> M e. ( ZZ>= ` N ) ) |