This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashen | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) <-> A ~~ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( ( # ` A ) = ( # ` B ) -> ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( # ` A ) ) = ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( # ` B ) ) ) |
|
| 2 | eqid | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| 3 | 2 | hashginv | |- ( A e. Fin -> ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( # ` A ) ) = ( card ` A ) ) |
| 4 | 2 | hashginv | |- ( B e. Fin -> ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( # ` B ) ) = ( card ` B ) ) |
| 5 | 3 4 | eqeqan12d | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( # ` A ) ) = ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( # ` B ) ) <-> ( card ` A ) = ( card ` B ) ) ) |
| 6 | 1 5 | imbitrid | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) -> ( card ` A ) = ( card ` B ) ) ) |
| 7 | fveq2 | |- ( ( card ` A ) = ( card ` B ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) ) |
|
| 8 | 2 | hashgval | |- ( A e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) = ( # ` A ) ) |
| 9 | 2 | hashgval | |- ( B e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) = ( # ` B ) ) |
| 10 | 8 9 | eqeqan12d | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) <-> ( # ` A ) = ( # ` B ) ) ) |
| 11 | 7 10 | imbitrid | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) = ( card ` B ) -> ( # ` A ) = ( # ` B ) ) ) |
| 12 | 6 11 | impbid | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) <-> ( card ` A ) = ( card ` B ) ) ) |
| 13 | finnum | |- ( A e. Fin -> A e. dom card ) |
|
| 14 | finnum | |- ( B e. Fin -> B e. dom card ) |
|
| 15 | carden2 | |- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) = ( card ` B ) <-> A ~~ B ) ) |
|
| 16 | 13 14 15 | syl2an | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( card ` A ) = ( card ` B ) <-> A ~~ B ) ) |
| 17 | 12 16 | bitrd | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) <-> A ~~ B ) ) |