This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction closure for a member of a finite set of sequential nonnegative integers. (Contributed by NM, 26-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fznn0sub2 | |- ( K e. ( 0 ... N ) -> ( N - K ) e. ( 0 ... N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzle1 | |- ( K e. ( 0 ... N ) -> 0 <_ K ) |
|
| 2 | elfzel2 | |- ( K e. ( 0 ... N ) -> N e. ZZ ) |
|
| 3 | elfzelz | |- ( K e. ( 0 ... N ) -> K e. ZZ ) |
|
| 4 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 5 | zre | |- ( K e. ZZ -> K e. RR ) |
|
| 6 | subge02 | |- ( ( N e. RR /\ K e. RR ) -> ( 0 <_ K <-> ( N - K ) <_ N ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( 0 <_ K <-> ( N - K ) <_ N ) ) |
| 8 | 2 3 7 | syl2anc | |- ( K e. ( 0 ... N ) -> ( 0 <_ K <-> ( N - K ) <_ N ) ) |
| 9 | 1 8 | mpbid | |- ( K e. ( 0 ... N ) -> ( N - K ) <_ N ) |
| 10 | fznn0sub | |- ( K e. ( 0 ... N ) -> ( N - K ) e. NN0 ) |
|
| 11 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 12 | 10 11 | eleqtrdi | |- ( K e. ( 0 ... N ) -> ( N - K ) e. ( ZZ>= ` 0 ) ) |
| 13 | elfz5 | |- ( ( ( N - K ) e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( ( N - K ) e. ( 0 ... N ) <-> ( N - K ) <_ N ) ) |
|
| 14 | 12 2 13 | syl2anc | |- ( K e. ( 0 ... N ) -> ( ( N - K ) e. ( 0 ... N ) <-> ( N - K ) <_ N ) ) |
| 15 | 9 14 | mpbird | |- ( K e. ( 0 ... N ) -> ( N - K ) e. ( 0 ... N ) ) |