This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by NM, 12-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suprub | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. A ) -> B <_ sup ( A , RR , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> A C_ RR ) |
|
| 2 | 1 | sselda | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. A ) -> B e. RR ) |
| 3 | suprcl | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> sup ( A , RR , < ) e. RR ) |
|
| 4 | 3 | adantr | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. A ) -> sup ( A , RR , < ) e. RR ) |
| 5 | ltso | |- < Or RR |
|
| 6 | 5 | a1i | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> < Or RR ) |
| 7 | sup3 | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> E. x e. RR ( A. y e. A -. x < y /\ A. y e. RR ( y < x -> E. z e. A y < z ) ) ) |
|
| 8 | 6 7 | supub | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> ( B e. A -> -. sup ( A , RR , < ) < B ) ) |
| 9 | 8 | imp | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. A ) -> -. sup ( A , RR , < ) < B ) |
| 10 | 2 4 9 | nltled | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ B e. A ) -> B <_ sup ( A , RR , < ) ) |