This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutative/associative law for division. (Contributed by NM, 2-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | div23 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. B ) / C ) = ( ( A / C ) x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcom | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
|
| 2 | 1 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) / C ) = ( ( B x. A ) / C ) ) |
| 3 | 2 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. B ) / C ) = ( ( B x. A ) / C ) ) |
| 4 | divass | |- ( ( B e. CC /\ A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( B x. A ) / C ) = ( B x. ( A / C ) ) ) |
|
| 5 | 4 | 3com12 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( B x. A ) / C ) = ( B x. ( A / C ) ) ) |
| 6 | simp2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC ) |
|
| 7 | divcl | |- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( A / C ) e. CC ) |
|
| 8 | 7 | 3expb | |- ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) e. CC ) |
| 9 | 8 | 3adant2 | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( A / C ) e. CC ) |
| 10 | 6 9 | mulcomd | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( B x. ( A / C ) ) = ( ( A / C ) x. B ) ) |
| 11 | 3 5 10 | 3eqtrd | |- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A x. B ) / C ) = ( ( A / C ) x. B ) ) |