This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzaddcl | |- ( ( N e. ( ZZ>= ` M ) /\ K e. NN0 ) -> ( N + K ) e. ( ZZ>= ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelcn | |- ( N e. ( ZZ>= ` M ) -> N e. CC ) |
|
| 2 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 3 | ax-1cn | |- 1 e. CC |
|
| 4 | addass | |- ( ( N e. CC /\ k e. CC /\ 1 e. CC ) -> ( ( N + k ) + 1 ) = ( N + ( k + 1 ) ) ) |
|
| 5 | 3 4 | mp3an3 | |- ( ( N e. CC /\ k e. CC ) -> ( ( N + k ) + 1 ) = ( N + ( k + 1 ) ) ) |
| 6 | 1 2 5 | syl2anr | |- ( ( k e. NN0 /\ N e. ( ZZ>= ` M ) ) -> ( ( N + k ) + 1 ) = ( N + ( k + 1 ) ) ) |
| 7 | 6 | adantr | |- ( ( ( k e. NN0 /\ N e. ( ZZ>= ` M ) ) /\ ( N + k ) e. ( ZZ>= ` M ) ) -> ( ( N + k ) + 1 ) = ( N + ( k + 1 ) ) ) |
| 8 | peano2uz | |- ( ( N + k ) e. ( ZZ>= ` M ) -> ( ( N + k ) + 1 ) e. ( ZZ>= ` M ) ) |
|
| 9 | 8 | adantl | |- ( ( ( k e. NN0 /\ N e. ( ZZ>= ` M ) ) /\ ( N + k ) e. ( ZZ>= ` M ) ) -> ( ( N + k ) + 1 ) e. ( ZZ>= ` M ) ) |
| 10 | 7 9 | eqeltrrd | |- ( ( ( k e. NN0 /\ N e. ( ZZ>= ` M ) ) /\ ( N + k ) e. ( ZZ>= ` M ) ) -> ( N + ( k + 1 ) ) e. ( ZZ>= ` M ) ) |
| 11 | 10 | exp31 | |- ( k e. NN0 -> ( N e. ( ZZ>= ` M ) -> ( ( N + k ) e. ( ZZ>= ` M ) -> ( N + ( k + 1 ) ) e. ( ZZ>= ` M ) ) ) ) |
| 12 | 11 | a2d | |- ( k e. NN0 -> ( ( N e. ( ZZ>= ` M ) -> ( N + k ) e. ( ZZ>= ` M ) ) -> ( N e. ( ZZ>= ` M ) -> ( N + ( k + 1 ) ) e. ( ZZ>= ` M ) ) ) ) |
| 13 | 1 | addridd | |- ( N e. ( ZZ>= ` M ) -> ( N + 0 ) = N ) |
| 14 | 13 | eleq1d | |- ( N e. ( ZZ>= ` M ) -> ( ( N + 0 ) e. ( ZZ>= ` M ) <-> N e. ( ZZ>= ` M ) ) ) |
| 15 | 14 | ibir | |- ( N e. ( ZZ>= ` M ) -> ( N + 0 ) e. ( ZZ>= ` M ) ) |
| 16 | oveq2 | |- ( j = 0 -> ( N + j ) = ( N + 0 ) ) |
|
| 17 | 16 | eleq1d | |- ( j = 0 -> ( ( N + j ) e. ( ZZ>= ` M ) <-> ( N + 0 ) e. ( ZZ>= ` M ) ) ) |
| 18 | 17 | imbi2d | |- ( j = 0 -> ( ( N e. ( ZZ>= ` M ) -> ( N + j ) e. ( ZZ>= ` M ) ) <-> ( N e. ( ZZ>= ` M ) -> ( N + 0 ) e. ( ZZ>= ` M ) ) ) ) |
| 19 | oveq2 | |- ( j = k -> ( N + j ) = ( N + k ) ) |
|
| 20 | 19 | eleq1d | |- ( j = k -> ( ( N + j ) e. ( ZZ>= ` M ) <-> ( N + k ) e. ( ZZ>= ` M ) ) ) |
| 21 | 20 | imbi2d | |- ( j = k -> ( ( N e. ( ZZ>= ` M ) -> ( N + j ) e. ( ZZ>= ` M ) ) <-> ( N e. ( ZZ>= ` M ) -> ( N + k ) e. ( ZZ>= ` M ) ) ) ) |
| 22 | oveq2 | |- ( j = ( k + 1 ) -> ( N + j ) = ( N + ( k + 1 ) ) ) |
|
| 23 | 22 | eleq1d | |- ( j = ( k + 1 ) -> ( ( N + j ) e. ( ZZ>= ` M ) <-> ( N + ( k + 1 ) ) e. ( ZZ>= ` M ) ) ) |
| 24 | 23 | imbi2d | |- ( j = ( k + 1 ) -> ( ( N e. ( ZZ>= ` M ) -> ( N + j ) e. ( ZZ>= ` M ) ) <-> ( N e. ( ZZ>= ` M ) -> ( N + ( k + 1 ) ) e. ( ZZ>= ` M ) ) ) ) |
| 25 | oveq2 | |- ( j = K -> ( N + j ) = ( N + K ) ) |
|
| 26 | 25 | eleq1d | |- ( j = K -> ( ( N + j ) e. ( ZZ>= ` M ) <-> ( N + K ) e. ( ZZ>= ` M ) ) ) |
| 27 | 26 | imbi2d | |- ( j = K -> ( ( N e. ( ZZ>= ` M ) -> ( N + j ) e. ( ZZ>= ` M ) ) <-> ( N e. ( ZZ>= ` M ) -> ( N + K ) e. ( ZZ>= ` M ) ) ) ) |
| 28 | 12 15 18 21 24 27 | nn0indALT | |- ( K e. NN0 -> ( N e. ( ZZ>= ` M ) -> ( N + K ) e. ( ZZ>= ` M ) ) ) |
| 29 | 28 | impcom | |- ( ( N e. ( ZZ>= ` M ) /\ K e. NN0 ) -> ( N + K ) e. ( ZZ>= ` M ) ) |