This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005) (Proof shortened by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzss1 | |- ( K e. ( ZZ>= ` M ) -> ( K ... N ) C_ ( M ... N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz | |- ( k e. ( K ... N ) -> k e. ( ZZ>= ` K ) ) |
|
| 2 | id | |- ( K e. ( ZZ>= ` M ) -> K e. ( ZZ>= ` M ) ) |
|
| 3 | uztrn | |- ( ( k e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` M ) ) -> k e. ( ZZ>= ` M ) ) |
|
| 4 | 1 2 3 | syl2anr | |- ( ( K e. ( ZZ>= ` M ) /\ k e. ( K ... N ) ) -> k e. ( ZZ>= ` M ) ) |
| 5 | elfzuz3 | |- ( k e. ( K ... N ) -> N e. ( ZZ>= ` k ) ) |
|
| 6 | 5 | adantl | |- ( ( K e. ( ZZ>= ` M ) /\ k e. ( K ... N ) ) -> N e. ( ZZ>= ` k ) ) |
| 7 | elfzuzb | |- ( k e. ( M ... N ) <-> ( k e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` k ) ) ) |
|
| 8 | 4 6 7 | sylanbrc | |- ( ( K e. ( ZZ>= ` M ) /\ k e. ( K ... N ) ) -> k e. ( M ... N ) ) |
| 9 | 8 | ex | |- ( K e. ( ZZ>= ` M ) -> ( k e. ( K ... N ) -> k e. ( M ... N ) ) ) |
| 10 | 9 | ssrdv | |- ( K e. ( ZZ>= ` M ) -> ( K ... N ) C_ ( M ... N ) ) |