This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mertens . (Contributed by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mertens.1 | |- ( ( ph /\ j e. NN0 ) -> ( F ` j ) = A ) |
|
| mertens.2 | |- ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) |
||
| mertens.3 | |- ( ( ph /\ j e. NN0 ) -> A e. CC ) |
||
| mertens.4 | |- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = B ) |
||
| mertens.5 | |- ( ( ph /\ k e. NN0 ) -> B e. CC ) |
||
| mertens.6 | |- ( ( ph /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
||
| mertens.7 | |- ( ph -> seq 0 ( + , K ) e. dom ~~> ) |
||
| mertens.8 | |- ( ph -> seq 0 ( + , G ) e. dom ~~> ) |
||
| mertens.9 | |- ( ph -> E e. RR+ ) |
||
| mertens.10 | |- T = { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } |
||
| mertens.11 | |- ( ps <-> ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
||
| Assertion | mertenslem2 | |- ( ph -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mertens.1 | |- ( ( ph /\ j e. NN0 ) -> ( F ` j ) = A ) |
|
| 2 | mertens.2 | |- ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) |
|
| 3 | mertens.3 | |- ( ( ph /\ j e. NN0 ) -> A e. CC ) |
|
| 4 | mertens.4 | |- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = B ) |
|
| 5 | mertens.5 | |- ( ( ph /\ k e. NN0 ) -> B e. CC ) |
|
| 6 | mertens.6 | |- ( ( ph /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
|
| 7 | mertens.7 | |- ( ph -> seq 0 ( + , K ) e. dom ~~> ) |
|
| 8 | mertens.8 | |- ( ph -> seq 0 ( + , G ) e. dom ~~> ) |
|
| 9 | mertens.9 | |- ( ph -> E e. RR+ ) |
|
| 10 | mertens.10 | |- T = { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } |
|
| 11 | mertens.11 | |- ( ps <-> ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
|
| 12 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 13 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 14 | 9 | rphalfcld | |- ( ph -> ( E / 2 ) e. RR+ ) |
| 15 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 16 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 17 | eqidd | |- ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( K ` j ) ) |
|
| 18 | 3 | abscld | |- ( ( ph /\ j e. NN0 ) -> ( abs ` A ) e. RR ) |
| 19 | 2 18 | eqeltrd | |- ( ( ph /\ j e. NN0 ) -> ( K ` j ) e. RR ) |
| 20 | 15 16 17 19 7 | isumrecl | |- ( ph -> sum_ j e. NN0 ( K ` j ) e. RR ) |
| 21 | 3 | absge0d | |- ( ( ph /\ j e. NN0 ) -> 0 <_ ( abs ` A ) ) |
| 22 | 21 2 | breqtrrd | |- ( ( ph /\ j e. NN0 ) -> 0 <_ ( K ` j ) ) |
| 23 | 15 16 17 19 7 22 | isumge0 | |- ( ph -> 0 <_ sum_ j e. NN0 ( K ` j ) ) |
| 24 | 20 23 | ge0p1rpd | |- ( ph -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR+ ) |
| 25 | 14 24 | rpdivcld | |- ( ph -> ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR+ ) |
| 26 | eqidd | |- ( ( ph /\ m e. NN ) -> ( seq 0 ( + , G ) ` m ) = ( seq 0 ( + , G ) ` m ) ) |
|
| 27 | 15 16 4 5 8 | isumclim2 | |- ( ph -> seq 0 ( + , G ) ~~> sum_ k e. NN0 B ) |
| 28 | 12 13 25 26 27 | climi2 | |- ( ph -> E. s e. NN A. m e. ( ZZ>= ` s ) ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 29 | eluznn | |- ( ( s e. NN /\ m e. ( ZZ>= ` s ) ) -> m e. NN ) |
|
| 30 | 4 5 | eqeltrd | |- ( ( ph /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
| 31 | 15 16 30 | serf | |- ( ph -> seq 0 ( + , G ) : NN0 --> CC ) |
| 32 | nnnn0 | |- ( m e. NN -> m e. NN0 ) |
|
| 33 | ffvelcdm | |- ( ( seq 0 ( + , G ) : NN0 --> CC /\ m e. NN0 ) -> ( seq 0 ( + , G ) ` m ) e. CC ) |
|
| 34 | 31 32 33 | syl2an | |- ( ( ph /\ m e. NN ) -> ( seq 0 ( + , G ) ` m ) e. CC ) |
| 35 | 15 16 4 5 8 | isumcl | |- ( ph -> sum_ k e. NN0 B e. CC ) |
| 36 | 35 | adantr | |- ( ( ph /\ m e. NN ) -> sum_ k e. NN0 B e. CC ) |
| 37 | 34 36 | abssubd | |- ( ( ph /\ m e. NN ) -> ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) = ( abs ` ( sum_ k e. NN0 B - ( seq 0 ( + , G ) ` m ) ) ) ) |
| 38 | eqid | |- ( ZZ>= ` ( m + 1 ) ) = ( ZZ>= ` ( m + 1 ) ) |
|
| 39 | 32 | adantl | |- ( ( ph /\ m e. NN ) -> m e. NN0 ) |
| 40 | peano2nn0 | |- ( m e. NN0 -> ( m + 1 ) e. NN0 ) |
|
| 41 | 39 40 | syl | |- ( ( ph /\ m e. NN ) -> ( m + 1 ) e. NN0 ) |
| 42 | 41 | nn0zd | |- ( ( ph /\ m e. NN ) -> ( m + 1 ) e. ZZ ) |
| 43 | simpll | |- ( ( ( ph /\ m e. NN ) /\ k e. ( ZZ>= ` ( m + 1 ) ) ) -> ph ) |
|
| 44 | eluznn0 | |- ( ( ( m + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( m + 1 ) ) ) -> k e. NN0 ) |
|
| 45 | 41 44 | sylan | |- ( ( ( ph /\ m e. NN ) /\ k e. ( ZZ>= ` ( m + 1 ) ) ) -> k e. NN0 ) |
| 46 | 43 45 4 | syl2anc | |- ( ( ( ph /\ m e. NN ) /\ k e. ( ZZ>= ` ( m + 1 ) ) ) -> ( G ` k ) = B ) |
| 47 | 43 45 5 | syl2anc | |- ( ( ( ph /\ m e. NN ) /\ k e. ( ZZ>= ` ( m + 1 ) ) ) -> B e. CC ) |
| 48 | 8 | adantr | |- ( ( ph /\ m e. NN ) -> seq 0 ( + , G ) e. dom ~~> ) |
| 49 | 30 | adantlr | |- ( ( ( ph /\ m e. NN ) /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
| 50 | 15 41 49 | iserex | |- ( ( ph /\ m e. NN ) -> ( seq 0 ( + , G ) e. dom ~~> <-> seq ( m + 1 ) ( + , G ) e. dom ~~> ) ) |
| 51 | 48 50 | mpbid | |- ( ( ph /\ m e. NN ) -> seq ( m + 1 ) ( + , G ) e. dom ~~> ) |
| 52 | 38 42 46 47 51 | isumcl | |- ( ( ph /\ m e. NN ) -> sum_ k e. ( ZZ>= ` ( m + 1 ) ) B e. CC ) |
| 53 | 34 52 | pncan2d | |- ( ( ph /\ m e. NN ) -> ( ( ( seq 0 ( + , G ) ` m ) + sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) - ( seq 0 ( + , G ) ` m ) ) = sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) |
| 54 | 4 | adantlr | |- ( ( ( ph /\ m e. NN ) /\ k e. NN0 ) -> ( G ` k ) = B ) |
| 55 | 5 | adantlr | |- ( ( ( ph /\ m e. NN ) /\ k e. NN0 ) -> B e. CC ) |
| 56 | 15 38 41 54 55 48 | isumsplit | |- ( ( ph /\ m e. NN ) -> sum_ k e. NN0 B = ( sum_ k e. ( 0 ... ( ( m + 1 ) - 1 ) ) B + sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) ) |
| 57 | nncn | |- ( m e. NN -> m e. CC ) |
|
| 58 | 57 | adantl | |- ( ( ph /\ m e. NN ) -> m e. CC ) |
| 59 | ax-1cn | |- 1 e. CC |
|
| 60 | pncan | |- ( ( m e. CC /\ 1 e. CC ) -> ( ( m + 1 ) - 1 ) = m ) |
|
| 61 | 58 59 60 | sylancl | |- ( ( ph /\ m e. NN ) -> ( ( m + 1 ) - 1 ) = m ) |
| 62 | 61 | oveq2d | |- ( ( ph /\ m e. NN ) -> ( 0 ... ( ( m + 1 ) - 1 ) ) = ( 0 ... m ) ) |
| 63 | 62 | sumeq1d | |- ( ( ph /\ m e. NN ) -> sum_ k e. ( 0 ... ( ( m + 1 ) - 1 ) ) B = sum_ k e. ( 0 ... m ) B ) |
| 64 | simpl | |- ( ( ph /\ m e. NN ) -> ph ) |
|
| 65 | elfznn0 | |- ( k e. ( 0 ... m ) -> k e. NN0 ) |
|
| 66 | 64 65 4 | syl2an | |- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... m ) ) -> ( G ` k ) = B ) |
| 67 | 39 15 | eleqtrdi | |- ( ( ph /\ m e. NN ) -> m e. ( ZZ>= ` 0 ) ) |
| 68 | 64 65 5 | syl2an | |- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... m ) ) -> B e. CC ) |
| 69 | 66 67 68 | fsumser | |- ( ( ph /\ m e. NN ) -> sum_ k e. ( 0 ... m ) B = ( seq 0 ( + , G ) ` m ) ) |
| 70 | 63 69 | eqtrd | |- ( ( ph /\ m e. NN ) -> sum_ k e. ( 0 ... ( ( m + 1 ) - 1 ) ) B = ( seq 0 ( + , G ) ` m ) ) |
| 71 | 70 | oveq1d | |- ( ( ph /\ m e. NN ) -> ( sum_ k e. ( 0 ... ( ( m + 1 ) - 1 ) ) B + sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) = ( ( seq 0 ( + , G ) ` m ) + sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) ) |
| 72 | 56 71 | eqtrd | |- ( ( ph /\ m e. NN ) -> sum_ k e. NN0 B = ( ( seq 0 ( + , G ) ` m ) + sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) ) |
| 73 | 72 | oveq1d | |- ( ( ph /\ m e. NN ) -> ( sum_ k e. NN0 B - ( seq 0 ( + , G ) ` m ) ) = ( ( ( seq 0 ( + , G ) ` m ) + sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) - ( seq 0 ( + , G ) ` m ) ) ) |
| 74 | 46 | sumeq2dv | |- ( ( ph /\ m e. NN ) -> sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) |
| 75 | 53 73 74 | 3eqtr4d | |- ( ( ph /\ m e. NN ) -> ( sum_ k e. NN0 B - ( seq 0 ( + , G ) ` m ) ) = sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) |
| 76 | 75 | fveq2d | |- ( ( ph /\ m e. NN ) -> ( abs ` ( sum_ k e. NN0 B - ( seq 0 ( + , G ) ` m ) ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) ) |
| 77 | 37 76 | eqtrd | |- ( ( ph /\ m e. NN ) -> ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) ) |
| 78 | 77 | breq1d | |- ( ( ph /\ m e. NN ) -> ( ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 79 | 29 78 | sylan2 | |- ( ( ph /\ ( s e. NN /\ m e. ( ZZ>= ` s ) ) ) -> ( ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 80 | 79 | anassrs | |- ( ( ( ph /\ s e. NN ) /\ m e. ( ZZ>= ` s ) ) -> ( ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 81 | 80 | ralbidva | |- ( ( ph /\ s e. NN ) -> ( A. m e. ( ZZ>= ` s ) ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> A. m e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 82 | fvoveq1 | |- ( m = n -> ( ZZ>= ` ( m + 1 ) ) = ( ZZ>= ` ( n + 1 ) ) ) |
|
| 83 | 82 | sumeq1d | |- ( m = n -> sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) |
| 84 | 83 | fveq2d | |- ( m = n -> ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 85 | 84 | breq1d | |- ( m = n -> ( ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 86 | 85 | cbvralvw | |- ( A. m e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 87 | 81 86 | bitrdi | |- ( ( ph /\ s e. NN ) -> ( A. m e. ( ZZ>= ` s ) ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 88 | 0zd | |- ( ( ph /\ ps ) -> 0 e. ZZ ) |
|
| 89 | 14 | adantr | |- ( ( ph /\ ps ) -> ( E / 2 ) e. RR+ ) |
| 90 | 11 | simplbi | |- ( ps -> s e. NN ) |
| 91 | 90 | adantl | |- ( ( ph /\ ps ) -> s e. NN ) |
| 92 | 91 | nnrpd | |- ( ( ph /\ ps ) -> s e. RR+ ) |
| 93 | 89 92 | rpdivcld | |- ( ( ph /\ ps ) -> ( ( E / 2 ) / s ) e. RR+ ) |
| 94 | eqid | |- ( ZZ>= ` ( n + 1 ) ) = ( ZZ>= ` ( n + 1 ) ) |
|
| 95 | elfznn0 | |- ( n e. ( 0 ... ( s - 1 ) ) -> n e. NN0 ) |
|
| 96 | 95 | adantl | |- ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> n e. NN0 ) |
| 97 | peano2nn0 | |- ( n e. NN0 -> ( n + 1 ) e. NN0 ) |
|
| 98 | 96 97 | syl | |- ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> ( n + 1 ) e. NN0 ) |
| 99 | 98 | nn0zd | |- ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> ( n + 1 ) e. ZZ ) |
| 100 | eqidd | |- ( ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) /\ k e. ( ZZ>= ` ( n + 1 ) ) ) -> ( G ` k ) = ( G ` k ) ) |
|
| 101 | simplll | |- ( ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) /\ k e. ( ZZ>= ` ( n + 1 ) ) ) -> ph ) |
|
| 102 | eluznn0 | |- ( ( ( n + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( n + 1 ) ) ) -> k e. NN0 ) |
|
| 103 | 98 102 | sylan | |- ( ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) /\ k e. ( ZZ>= ` ( n + 1 ) ) ) -> k e. NN0 ) |
| 104 | 101 103 30 | syl2anc | |- ( ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) /\ k e. ( ZZ>= ` ( n + 1 ) ) ) -> ( G ` k ) e. CC ) |
| 105 | 8 | ad2antrr | |- ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> seq 0 ( + , G ) e. dom ~~> ) |
| 106 | 30 | ad4ant14 | |- ( ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
| 107 | 15 98 106 | iserex | |- ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> ( seq 0 ( + , G ) e. dom ~~> <-> seq ( n + 1 ) ( + , G ) e. dom ~~> ) ) |
| 108 | 105 107 | mpbid | |- ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> seq ( n + 1 ) ( + , G ) e. dom ~~> ) |
| 109 | 94 99 100 104 108 | isumcl | |- ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) e. CC ) |
| 110 | 109 | abscld | |- ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) e. RR ) |
| 111 | eleq1a | |- ( ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) e. RR -> ( z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) -> z e. RR ) ) |
|
| 112 | 110 111 | syl | |- ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> ( z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) -> z e. RR ) ) |
| 113 | 112 | rexlimdva | |- ( ( ph /\ ps ) -> ( E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) -> z e. RR ) ) |
| 114 | 113 | abssdv | |- ( ( ph /\ ps ) -> { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } C_ RR ) |
| 115 | 10 114 | eqsstrid | |- ( ( ph /\ ps ) -> T C_ RR ) |
| 116 | fzfid | |- ( ( ph /\ ps ) -> ( 0 ... ( s - 1 ) ) e. Fin ) |
|
| 117 | abrexfi | |- ( ( 0 ... ( s - 1 ) ) e. Fin -> { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } e. Fin ) |
|
| 118 | 116 117 | syl | |- ( ( ph /\ ps ) -> { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } e. Fin ) |
| 119 | 10 118 | eqeltrid | |- ( ( ph /\ ps ) -> T e. Fin ) |
| 120 | nnm1nn0 | |- ( s e. NN -> ( s - 1 ) e. NN0 ) |
|
| 121 | 91 120 | syl | |- ( ( ph /\ ps ) -> ( s - 1 ) e. NN0 ) |
| 122 | 121 15 | eleqtrdi | |- ( ( ph /\ ps ) -> ( s - 1 ) e. ( ZZ>= ` 0 ) ) |
| 123 | eluzfz1 | |- ( ( s - 1 ) e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... ( s - 1 ) ) ) |
|
| 124 | 122 123 | syl | |- ( ( ph /\ ps ) -> 0 e. ( 0 ... ( s - 1 ) ) ) |
| 125 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 126 | 125 4 | sylan2 | |- ( ( ph /\ k e. NN ) -> ( G ` k ) = B ) |
| 127 | 126 | sumeq2dv | |- ( ph -> sum_ k e. NN ( G ` k ) = sum_ k e. NN B ) |
| 128 | 127 | adantr | |- ( ( ph /\ ps ) -> sum_ k e. NN ( G ` k ) = sum_ k e. NN B ) |
| 129 | 128 | fveq2d | |- ( ( ph /\ ps ) -> ( abs ` sum_ k e. NN ( G ` k ) ) = ( abs ` sum_ k e. NN B ) ) |
| 130 | 129 | eqcomd | |- ( ( ph /\ ps ) -> ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. NN ( G ` k ) ) ) |
| 131 | fv0p1e1 | |- ( n = 0 -> ( ZZ>= ` ( n + 1 ) ) = ( ZZ>= ` 1 ) ) |
|
| 132 | 131 12 | eqtr4di | |- ( n = 0 -> ( ZZ>= ` ( n + 1 ) ) = NN ) |
| 133 | 132 | sumeq1d | |- ( n = 0 -> sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) = sum_ k e. NN ( G ` k ) ) |
| 134 | 133 | fveq2d | |- ( n = 0 -> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) = ( abs ` sum_ k e. NN ( G ` k ) ) ) |
| 135 | 134 | rspceeqv | |- ( ( 0 e. ( 0 ... ( s - 1 ) ) /\ ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. NN ( G ` k ) ) ) -> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 136 | 124 130 135 | syl2anc | |- ( ( ph /\ ps ) -> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 137 | fvex | |- ( abs ` sum_ k e. NN B ) e. _V |
|
| 138 | eqeq1 | |- ( z = ( abs ` sum_ k e. NN B ) -> ( z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
|
| 139 | 138 | rexbidv | |- ( z = ( abs ` sum_ k e. NN B ) -> ( E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
| 140 | 137 139 10 | elab2 | |- ( ( abs ` sum_ k e. NN B ) e. T <-> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 141 | 136 140 | sylibr | |- ( ( ph /\ ps ) -> ( abs ` sum_ k e. NN B ) e. T ) |
| 142 | 141 | ne0d | |- ( ( ph /\ ps ) -> T =/= (/) ) |
| 143 | ltso | |- < Or RR |
|
| 144 | fisupcl | |- ( ( < Or RR /\ ( T e. Fin /\ T =/= (/) /\ T C_ RR ) ) -> sup ( T , RR , < ) e. T ) |
|
| 145 | 143 144 | mpan | |- ( ( T e. Fin /\ T =/= (/) /\ T C_ RR ) -> sup ( T , RR , < ) e. T ) |
| 146 | 119 142 115 145 | syl3anc | |- ( ( ph /\ ps ) -> sup ( T , RR , < ) e. T ) |
| 147 | 115 146 | sseldd | |- ( ( ph /\ ps ) -> sup ( T , RR , < ) e. RR ) |
| 148 | 0red | |- ( ( ph /\ ps ) -> 0 e. RR ) |
|
| 149 | 125 5 | sylan2 | |- ( ( ph /\ k e. NN ) -> B e. CC ) |
| 150 | 1nn0 | |- 1 e. NN0 |
|
| 151 | 150 | a1i | |- ( ph -> 1 e. NN0 ) |
| 152 | 15 151 30 | iserex | |- ( ph -> ( seq 0 ( + , G ) e. dom ~~> <-> seq 1 ( + , G ) e. dom ~~> ) ) |
| 153 | 8 152 | mpbid | |- ( ph -> seq 1 ( + , G ) e. dom ~~> ) |
| 154 | 12 13 126 149 153 | isumcl | |- ( ph -> sum_ k e. NN B e. CC ) |
| 155 | 154 | adantr | |- ( ( ph /\ ps ) -> sum_ k e. NN B e. CC ) |
| 156 | 155 | abscld | |- ( ( ph /\ ps ) -> ( abs ` sum_ k e. NN B ) e. RR ) |
| 157 | 155 | absge0d | |- ( ( ph /\ ps ) -> 0 <_ ( abs ` sum_ k e. NN B ) ) |
| 158 | fimaxre2 | |- ( ( T C_ RR /\ T e. Fin ) -> E. z e. RR A. w e. T w <_ z ) |
|
| 159 | 115 119 158 | syl2anc | |- ( ( ph /\ ps ) -> E. z e. RR A. w e. T w <_ z ) |
| 160 | 115 142 159 141 | suprubd | |- ( ( ph /\ ps ) -> ( abs ` sum_ k e. NN B ) <_ sup ( T , RR , < ) ) |
| 161 | 148 156 147 157 160 | letrd | |- ( ( ph /\ ps ) -> 0 <_ sup ( T , RR , < ) ) |
| 162 | 147 161 | ge0p1rpd | |- ( ( ph /\ ps ) -> ( sup ( T , RR , < ) + 1 ) e. RR+ ) |
| 163 | 93 162 | rpdivcld | |- ( ( ph /\ ps ) -> ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. RR+ ) |
| 164 | fveq2 | |- ( n = m -> ( K ` n ) = ( K ` m ) ) |
|
| 165 | eqid | |- ( n e. NN0 |-> ( K ` n ) ) = ( n e. NN0 |-> ( K ` n ) ) |
|
| 166 | fvex | |- ( K ` m ) e. _V |
|
| 167 | 164 165 166 | fvmpt | |- ( m e. NN0 -> ( ( n e. NN0 |-> ( K ` n ) ) ` m ) = ( K ` m ) ) |
| 168 | 167 | adantl | |- ( ( ( ph /\ ps ) /\ m e. NN0 ) -> ( ( n e. NN0 |-> ( K ` n ) ) ` m ) = ( K ` m ) ) |
| 169 | nn0ex | |- NN0 e. _V |
|
| 170 | 169 | mptex | |- ( n e. NN0 |-> ( K ` n ) ) e. _V |
| 171 | 170 | a1i | |- ( ph -> ( n e. NN0 |-> ( K ` n ) ) e. _V ) |
| 172 | elnn0uz | |- ( j e. NN0 <-> j e. ( ZZ>= ` 0 ) ) |
|
| 173 | fveq2 | |- ( n = j -> ( K ` n ) = ( K ` j ) ) |
|
| 174 | fvex | |- ( K ` j ) e. _V |
|
| 175 | 173 165 174 | fvmpt | |- ( j e. NN0 -> ( ( n e. NN0 |-> ( K ` n ) ) ` j ) = ( K ` j ) ) |
| 176 | 175 | adantl | |- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( K ` n ) ) ` j ) = ( K ` j ) ) |
| 177 | 172 176 | sylan2br | |- ( ( ph /\ j e. ( ZZ>= ` 0 ) ) -> ( ( n e. NN0 |-> ( K ` n ) ) ` j ) = ( K ` j ) ) |
| 178 | 16 177 | seqfeq | |- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( K ` n ) ) ) = seq 0 ( + , K ) ) |
| 179 | 178 7 | eqeltrd | |- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( K ` n ) ) ) e. dom ~~> ) |
| 180 | 176 2 | eqtrd | |- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( K ` n ) ) ` j ) = ( abs ` A ) ) |
| 181 | 180 18 | eqeltrd | |- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( K ` n ) ) ` j ) e. RR ) |
| 182 | 181 | recnd | |- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( K ` n ) ) ` j ) e. CC ) |
| 183 | 15 16 171 179 182 | serf0 | |- ( ph -> ( n e. NN0 |-> ( K ` n ) ) ~~> 0 ) |
| 184 | 183 | adantr | |- ( ( ph /\ ps ) -> ( n e. NN0 |-> ( K ` n ) ) ~~> 0 ) |
| 185 | 15 88 163 168 184 | climi0 | |- ( ( ph /\ ps ) -> E. t e. NN0 A. m e. ( ZZ>= ` t ) ( abs ` ( K ` m ) ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 186 | simplll | |- ( ( ( ( ph /\ ps ) /\ t e. NN0 ) /\ m e. ( ZZ>= ` t ) ) -> ph ) |
|
| 187 | eluznn0 | |- ( ( t e. NN0 /\ m e. ( ZZ>= ` t ) ) -> m e. NN0 ) |
|
| 188 | 187 | adantll | |- ( ( ( ( ph /\ ps ) /\ t e. NN0 ) /\ m e. ( ZZ>= ` t ) ) -> m e. NN0 ) |
| 189 | 19 22 | absidd | |- ( ( ph /\ j e. NN0 ) -> ( abs ` ( K ` j ) ) = ( K ` j ) ) |
| 190 | 189 | ralrimiva | |- ( ph -> A. j e. NN0 ( abs ` ( K ` j ) ) = ( K ` j ) ) |
| 191 | fveq2 | |- ( j = m -> ( K ` j ) = ( K ` m ) ) |
|
| 192 | 191 | fveq2d | |- ( j = m -> ( abs ` ( K ` j ) ) = ( abs ` ( K ` m ) ) ) |
| 193 | 192 191 | eqeq12d | |- ( j = m -> ( ( abs ` ( K ` j ) ) = ( K ` j ) <-> ( abs ` ( K ` m ) ) = ( K ` m ) ) ) |
| 194 | 193 | rspccva | |- ( ( A. j e. NN0 ( abs ` ( K ` j ) ) = ( K ` j ) /\ m e. NN0 ) -> ( abs ` ( K ` m ) ) = ( K ` m ) ) |
| 195 | 190 194 | sylan | |- ( ( ph /\ m e. NN0 ) -> ( abs ` ( K ` m ) ) = ( K ` m ) ) |
| 196 | 186 188 195 | syl2anc | |- ( ( ( ( ph /\ ps ) /\ t e. NN0 ) /\ m e. ( ZZ>= ` t ) ) -> ( abs ` ( K ` m ) ) = ( K ` m ) ) |
| 197 | 196 | breq1d | |- ( ( ( ( ph /\ ps ) /\ t e. NN0 ) /\ m e. ( ZZ>= ` t ) ) -> ( ( abs ` ( K ` m ) ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) <-> ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
| 198 | 197 | ralbidva | |- ( ( ( ph /\ ps ) /\ t e. NN0 ) -> ( A. m e. ( ZZ>= ` t ) ( abs ` ( K ` m ) ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) <-> A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
| 199 | 164 | breq1d | |- ( n = m -> ( ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) <-> ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
| 200 | 199 | cbvralvw | |- ( A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) <-> A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 201 | 198 200 | bitr4di | |- ( ( ( ph /\ ps ) /\ t e. NN0 ) -> ( A. m e. ( ZZ>= ` t ) ( abs ` ( K ` m ) ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) <-> A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
| 202 | 1 | ad4ant14 | |- ( ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) /\ j e. NN0 ) -> ( F ` j ) = A ) |
| 203 | 2 | ad4ant14 | |- ( ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) |
| 204 | 3 | ad4ant14 | |- ( ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) /\ j e. NN0 ) -> A e. CC ) |
| 205 | 4 | ad4ant14 | |- ( ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) /\ k e. NN0 ) -> ( G ` k ) = B ) |
| 206 | 5 | ad4ant14 | |- ( ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) /\ k e. NN0 ) -> B e. CC ) |
| 207 | 6 | ad4ant14 | |- ( ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
| 208 | 7 | ad2antrr | |- ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> seq 0 ( + , K ) e. dom ~~> ) |
| 209 | 8 | ad2antrr | |- ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> seq 0 ( + , G ) e. dom ~~> ) |
| 210 | 9 | ad2antrr | |- ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> E e. RR+ ) |
| 211 | 200 | anbi2i | |- ( ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) <-> ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
| 212 | 211 | anbi2i | |- ( ( ps /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) <-> ( ps /\ ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) ) |
| 213 | 212 | biimpi | |- ( ( ps /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> ( ps /\ ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) ) |
| 214 | 213 | adantll | |- ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> ( ps /\ ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) ) |
| 215 | 115 142 159 | 3jca | |- ( ( ph /\ ps ) -> ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) |
| 216 | 161 215 | jca | |- ( ( ph /\ ps ) -> ( 0 <_ sup ( T , RR , < ) /\ ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) ) |
| 217 | 216 | adantr | |- ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> ( 0 <_ sup ( T , RR , < ) /\ ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) ) |
| 218 | 202 203 204 205 206 207 208 209 210 10 11 214 217 | mertenslem1 | |- ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |
| 219 | 218 | expr | |- ( ( ( ph /\ ps ) /\ t e. NN0 ) -> ( A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) |
| 220 | 201 219 | sylbid | |- ( ( ( ph /\ ps ) /\ t e. NN0 ) -> ( A. m e. ( ZZ>= ` t ) ( abs ` ( K ` m ) ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) |
| 221 | 220 | rexlimdva | |- ( ( ph /\ ps ) -> ( E. t e. NN0 A. m e. ( ZZ>= ` t ) ( abs ` ( K ` m ) ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) |
| 222 | 185 221 | mpd | |- ( ( ph /\ ps ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |
| 223 | 222 | ex | |- ( ph -> ( ps -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) |
| 224 | 11 223 | biimtrrid | |- ( ph -> ( ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) |
| 225 | 224 | expdimp | |- ( ( ph /\ s e. NN ) -> ( A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) |
| 226 | 87 225 | sylbid | |- ( ( ph /\ s e. NN ) -> ( A. m e. ( ZZ>= ` s ) ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) |
| 227 | 226 | rexlimdva | |- ( ph -> ( E. s e. NN A. m e. ( ZZ>= ` s ) ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) |
| 228 | 28 227 | mpd | |- ( ph -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |