This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A series indexed by NN with only odd terms. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumnnodd.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℂ ) | |
| sumnnodd.even0 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ ( 𝑘 / 2 ) ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = 0 ) | ||
| sumnnodd.sc | ⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ 𝐵 ) | ||
| Assertion | sumnnodd | ⊢ ( 𝜑 → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ 𝐵 ∧ Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumnnodd.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℂ ) | |
| 2 | sumnnodd.even0 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ ( 𝑘 / 2 ) ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = 0 ) | |
| 3 | sumnnodd.sc | ⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ 𝐵 ) | |
| 4 | nfv | ⊢ Ⅎ 𝑘 𝜑 | |
| 5 | nfcv | ⊢ Ⅎ 𝑘 seq 1 ( + , 𝐹 ) | |
| 6 | nfcv | ⊢ Ⅎ 𝑘 1 | |
| 7 | nfcv | ⊢ Ⅎ 𝑘 + | |
| 8 | nfmpt1 | ⊢ Ⅎ 𝑘 ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) | |
| 9 | 6 7 8 | nfseq | ⊢ Ⅎ 𝑘 seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) |
| 10 | nfmpt1 | ⊢ Ⅎ 𝑘 ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) | |
| 11 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 12 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 13 | seqex | ⊢ seq 1 ( + , 𝐹 ) ∈ V | |
| 14 | 13 | a1i | ⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ∈ V ) |
| 15 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 16 | 11 12 15 | serf | ⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℂ ) |
| 17 | 16 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ∈ ℂ ) |
| 18 | 1nn | ⊢ 1 ∈ ℕ | |
| 19 | oveq2 | ⊢ ( 𝑘 = 1 → ( 2 · 𝑘 ) = ( 2 · 1 ) ) | |
| 20 | 19 | oveq1d | ⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · 1 ) − 1 ) ) |
| 21 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) | |
| 22 | ovex | ⊢ ( ( 2 · 1 ) − 1 ) ∈ V | |
| 23 | 20 21 22 | fvmpt | ⊢ ( 1 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 1 ) = ( ( 2 · 1 ) − 1 ) ) |
| 24 | 18 23 | ax-mp | ⊢ ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 1 ) = ( ( 2 · 1 ) − 1 ) |
| 25 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
| 26 | 25 | oveq1i | ⊢ ( ( 2 · 1 ) − 1 ) = ( 2 − 1 ) |
| 27 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 28 | 24 26 27 | 3eqtri | ⊢ ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 1 ) = 1 |
| 29 | 28 18 | eqeltri | ⊢ ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 1 ) ∈ ℕ |
| 30 | 29 | a1i | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 1 ) ∈ ℕ ) |
| 31 | 2z | ⊢ 2 ∈ ℤ | |
| 32 | 31 | a1i | ⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℤ ) |
| 33 | nnz | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) | |
| 34 | 32 33 | zmulcld | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℤ ) |
| 35 | 33 | peano2zd | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℤ ) |
| 36 | 32 35 | zmulcld | ⊢ ( 𝑘 ∈ ℕ → ( 2 · ( 𝑘 + 1 ) ) ∈ ℤ ) |
| 37 | 1zzd | ⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℤ ) | |
| 38 | 36 37 | zsubcld | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ∈ ℤ ) |
| 39 | 2re | ⊢ 2 ∈ ℝ | |
| 40 | 39 | a1i | ⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℝ ) |
| 41 | nnre | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) | |
| 42 | 40 41 | remulcld | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℝ ) |
| 43 | 42 | lep1d | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ≤ ( ( 2 · 𝑘 ) + 1 ) ) |
| 44 | 2cnd | ⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℂ ) | |
| 45 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
| 46 | 1cnd | ⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℂ ) | |
| 47 | 44 45 46 | adddid | ⊢ ( 𝑘 ∈ ℕ → ( 2 · ( 𝑘 + 1 ) ) = ( ( 2 · 𝑘 ) + ( 2 · 1 ) ) ) |
| 48 | 25 | oveq2i | ⊢ ( ( 2 · 𝑘 ) + ( 2 · 1 ) ) = ( ( 2 · 𝑘 ) + 2 ) |
| 49 | 47 48 | eqtrdi | ⊢ ( 𝑘 ∈ ℕ → ( 2 · ( 𝑘 + 1 ) ) = ( ( 2 · 𝑘 ) + 2 ) ) |
| 50 | 49 | oveq1d | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) = ( ( ( 2 · 𝑘 ) + 2 ) − 1 ) ) |
| 51 | 44 45 | mulcld | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℂ ) |
| 52 | 51 44 46 | addsubassd | ⊢ ( 𝑘 ∈ ℕ → ( ( ( 2 · 𝑘 ) + 2 ) − 1 ) = ( ( 2 · 𝑘 ) + ( 2 − 1 ) ) ) |
| 53 | 27 | oveq2i | ⊢ ( ( 2 · 𝑘 ) + ( 2 − 1 ) ) = ( ( 2 · 𝑘 ) + 1 ) |
| 54 | 53 | a1i | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + ( 2 − 1 ) ) = ( ( 2 · 𝑘 ) + 1 ) ) |
| 55 | 50 52 54 | 3eqtrrd | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ) |
| 56 | 43 55 | breqtrd | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ≤ ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ) |
| 57 | eluz2 | ⊢ ( ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( 2 · 𝑘 ) ) ↔ ( ( 2 · 𝑘 ) ∈ ℤ ∧ ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ∈ ℤ ∧ ( 2 · 𝑘 ) ≤ ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ) ) | |
| 58 | 34 38 56 57 | syl3anbrc | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ∈ ( ℤ≥ ‘ ( 2 · 𝑘 ) ) ) |
| 59 | oveq2 | ⊢ ( 𝑘 = 𝑗 → ( 2 · 𝑘 ) = ( 2 · 𝑗 ) ) | |
| 60 | 59 | oveq1d | ⊢ ( 𝑘 = 𝑗 → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · 𝑗 ) − 1 ) ) |
| 61 | 60 | cbvmptv | ⊢ ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 2 · 𝑗 ) − 1 ) ) |
| 62 | oveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 2 · 𝑗 ) = ( 2 · ( 𝑘 + 1 ) ) ) | |
| 63 | 62 | oveq1d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 2 · 𝑗 ) − 1 ) = ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ) |
| 64 | peano2nn | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 65 | 61 63 64 38 | fvmptd3 | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 2 · ( 𝑘 + 1 ) ) − 1 ) ) |
| 66 | 34 37 | zsubcld | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) − 1 ) ∈ ℤ ) |
| 67 | 21 | fvmpt2 | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( ( 2 · 𝑘 ) − 1 ) ∈ ℤ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) = ( ( 2 · 𝑘 ) − 1 ) ) |
| 68 | 66 67 | mpdan | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) = ( ( 2 · 𝑘 ) − 1 ) ) |
| 69 | 68 | oveq1d | ⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) + 1 ) = ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) ) |
| 70 | 51 46 | npcand | ⊢ ( 𝑘 ∈ ℕ → ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) = ( 2 · 𝑘 ) ) |
| 71 | 69 70 | eqtrd | ⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) + 1 ) = ( 2 · 𝑘 ) ) |
| 72 | 71 | fveq2d | ⊢ ( 𝑘 ∈ ℕ → ( ℤ≥ ‘ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) + 1 ) ) = ( ℤ≥ ‘ ( 2 · 𝑘 ) ) ) |
| 73 | 58 65 72 | 3eltr4d | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) + 1 ) ) ) |
| 74 | 73 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) + 1 ) ) ) |
| 75 | seqex | ⊢ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ∈ V | |
| 76 | 75 | a1i | ⊢ ( 𝜑 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ∈ V ) |
| 77 | incom | ⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) = ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) | |
| 78 | inss2 | ⊢ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } | |
| 79 | ssrin | ⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } → ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ⊆ ( { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ) | |
| 80 | 78 79 | ax-mp | ⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ⊆ ( { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 81 | 77 80 | eqsstri | ⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ⊆ ( { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 82 | disjdif | ⊢ ( { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) = ∅ | |
| 83 | 81 82 | sseqtri | ⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ⊆ ∅ |
| 84 | ss0 | ⊢ ( ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ⊆ ∅ → ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) = ∅ ) | |
| 85 | 83 84 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∩ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) = ∅ ) |
| 86 | uncom | ⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∪ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) = ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∪ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) | |
| 87 | inundif | ⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∪ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) = ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) | |
| 88 | 86 87 | eqtr2i | ⊢ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) = ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∪ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 89 | 88 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) = ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∪ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ) |
| 90 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∈ Fin ) | |
| 91 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → 𝐹 : ℕ ⟶ ℂ ) |
| 92 | elfznn | ⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 𝑗 ∈ ℕ ) | |
| 93 | 92 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → 𝑗 ∈ ℕ ) |
| 94 | 91 93 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 95 | 94 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 96 | 85 89 90 95 | fsumsplit | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) = ( Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) + Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) ) ) |
| 97 | simpl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → 𝜑 ) | |
| 98 | ssrab2 | ⊢ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ⊆ ℕ | |
| 99 | 78 | sseli | ⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) |
| 100 | 98 99 | sselid | ⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 ∈ ℕ ) |
| 101 | 100 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → 𝑗 ∈ ℕ ) |
| 102 | oveq1 | ⊢ ( 𝑘 = 𝑗 → ( 𝑘 / 2 ) = ( 𝑗 / 2 ) ) | |
| 103 | 102 | eleq1d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝑘 / 2 ) ∈ ℕ ↔ ( 𝑗 / 2 ) ∈ ℕ ) ) |
| 104 | oveq1 | ⊢ ( 𝑛 = 𝑘 → ( 𝑛 / 2 ) = ( 𝑘 / 2 ) ) | |
| 105 | 104 | eleq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ( 𝑘 / 2 ) ∈ ℕ ) ) |
| 106 | 105 | elrab | ⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ↔ ( 𝑘 ∈ ℕ ∧ ( 𝑘 / 2 ) ∈ ℕ ) ) |
| 107 | 106 | simprbi | ⊢ ( 𝑘 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } → ( 𝑘 / 2 ) ∈ ℕ ) |
| 108 | 103 107 | vtoclga | ⊢ ( 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } → ( 𝑗 / 2 ) ∈ ℕ ) |
| 109 | 99 108 | syl | ⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → ( 𝑗 / 2 ) ∈ ℕ ) |
| 110 | 109 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝑗 / 2 ) ∈ ℕ ) |
| 111 | eleq1w | ⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ ℕ ↔ 𝑗 ∈ ℕ ) ) | |
| 112 | 111 103 | 3anbi23d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ ( 𝑘 / 2 ) ∈ ℕ ) ↔ ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ ( 𝑗 / 2 ) ∈ ℕ ) ) ) |
| 113 | fveqeq2 | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) = 0 ↔ ( 𝐹 ‘ 𝑗 ) = 0 ) ) | |
| 114 | 112 113 | imbi12d | ⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ∧ ( 𝑘 / 2 ) ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = 0 ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ ( 𝑗 / 2 ) ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = 0 ) ) ) |
| 115 | 114 2 | chvarvv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ∧ ( 𝑗 / 2 ) ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = 0 ) |
| 116 | 97 101 110 115 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝐹 ‘ 𝑗 ) = 0 ) |
| 117 | 116 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) = Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) 0 ) |
| 118 | fzfid | ⊢ ( 𝜑 → ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∈ Fin ) | |
| 119 | inss1 | ⊢ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) | |
| 120 | 119 | a1i | ⊢ ( 𝜑 → ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 121 | ssfi | ⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∈ Fin ∧ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin ) | |
| 122 | 118 120 121 | syl2anc | ⊢ ( 𝜑 → ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin ) |
| 123 | 122 | olcd | ⊢ ( 𝜑 → ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( ℤ≥ ‘ 𝐶 ) ∨ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin ) ) |
| 124 | sumz | ⊢ ( ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( ℤ≥ ‘ 𝐶 ) ∨ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin ) → Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) 0 = 0 ) | |
| 125 | 123 124 | syl | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) 0 = 0 ) |
| 126 | 117 125 | eqtrd | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) = 0 ) |
| 127 | 126 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) = 0 ) |
| 128 | 127 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) + Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) ) = ( Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) + 0 ) ) |
| 129 | fzfi | ⊢ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∈ Fin | |
| 130 | difss | ⊢ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) | |
| 131 | ssfi | ⊢ ( ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∈ Fin ∧ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ⊆ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin ) | |
| 132 | 129 130 131 | mp2an | ⊢ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin |
| 133 | 132 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∈ Fin ) |
| 134 | 130 | sseli | ⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 135 | 134 94 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 136 | 135 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 137 | 133 136 | fsumcl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 138 | 137 | addridd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) + 0 ) = Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) ) |
| 139 | fveq2 | ⊢ ( 𝑗 = 𝑖 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑖 ) ) | |
| 140 | 139 | cbvsumv | ⊢ Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) = Σ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑖 ) |
| 141 | 138 140 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) + 0 ) = Σ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑖 ) ) |
| 142 | 128 141 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) + Σ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∩ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑗 ) ) = Σ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑖 ) ) |
| 143 | fveq2 | ⊢ ( 𝑖 = ( ( 2 · 𝑗 ) − 1 ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) | |
| 144 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 ... 𝑘 ) ∈ Fin ) | |
| 145 | 1zzd | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 1 ∈ ℤ ) | |
| 146 | 66 | adantr | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( ( 2 · 𝑘 ) − 1 ) ∈ ℤ ) |
| 147 | 31 | a1i | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℤ ) |
| 148 | elfzelz | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 𝑖 ∈ ℤ ) | |
| 149 | 147 148 | zmulcld | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑖 ) ∈ ℤ ) |
| 150 | 1zzd | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 1 ∈ ℤ ) | |
| 151 | 149 150 | zsubcld | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑖 ) − 1 ) ∈ ℤ ) |
| 152 | 151 | adantl | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( ( 2 · 𝑖 ) − 1 ) ∈ ℤ ) |
| 153 | 26 27 | eqtr2i | ⊢ 1 = ( ( 2 · 1 ) − 1 ) |
| 154 | 1re | ⊢ 1 ∈ ℝ | |
| 155 | 39 154 | remulcli | ⊢ ( 2 · 1 ) ∈ ℝ |
| 156 | 155 | a1i | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 2 · 1 ) ∈ ℝ ) |
| 157 | 149 | zred | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑖 ) ∈ ℝ ) |
| 158 | 1red | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 1 ∈ ℝ ) | |
| 159 | 148 | zred | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 𝑖 ∈ ℝ ) |
| 160 | 39 | a1i | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℝ ) |
| 161 | 0le2 | ⊢ 0 ≤ 2 | |
| 162 | 161 | a1i | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 0 ≤ 2 ) |
| 163 | elfzle1 | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 1 ≤ 𝑖 ) | |
| 164 | 158 159 160 162 163 | lemul2ad | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 2 · 1 ) ≤ ( 2 · 𝑖 ) ) |
| 165 | 156 157 158 164 | lesub1dd | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 1 ) − 1 ) ≤ ( ( 2 · 𝑖 ) − 1 ) ) |
| 166 | 153 165 | eqbrtrid | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 1 ≤ ( ( 2 · 𝑖 ) − 1 ) ) |
| 167 | 166 | adantl | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 1 ≤ ( ( 2 · 𝑖 ) − 1 ) ) |
| 168 | 157 | adantl | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( 2 · 𝑖 ) ∈ ℝ ) |
| 169 | 42 | adantr | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( 2 · 𝑘 ) ∈ ℝ ) |
| 170 | 1red | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 1 ∈ ℝ ) | |
| 171 | 159 | adantl | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 𝑖 ∈ ℝ ) |
| 172 | 41 | adantr | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 𝑘 ∈ ℝ ) |
| 173 | 39 | a1i | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 2 ∈ ℝ ) |
| 174 | 161 | a1i | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 0 ≤ 2 ) |
| 175 | elfzle2 | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 𝑖 ≤ 𝑘 ) | |
| 176 | 175 | adantl | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → 𝑖 ≤ 𝑘 ) |
| 177 | 171 172 173 174 176 | lemul2ad | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( 2 · 𝑖 ) ≤ ( 2 · 𝑘 ) ) |
| 178 | 168 169 170 177 | lesub1dd | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( ( 2 · 𝑖 ) − 1 ) ≤ ( ( 2 · 𝑘 ) − 1 ) ) |
| 179 | 145 146 152 167 178 | elfzd | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( ( 2 · 𝑖 ) − 1 ) ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 180 | 149 | zcnd | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑖 ) ∈ ℂ ) |
| 181 | 1cnd | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 1 ∈ ℂ ) | |
| 182 | 2cnd | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℂ ) | |
| 183 | 2ne0 | ⊢ 2 ≠ 0 | |
| 184 | 183 | a1i | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 2 ≠ 0 ) |
| 185 | 180 181 182 184 | divsubdird | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) = ( ( ( 2 · 𝑖 ) / 2 ) − ( 1 / 2 ) ) ) |
| 186 | 148 | zcnd | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → 𝑖 ∈ ℂ ) |
| 187 | 186 182 184 | divcan3d | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑖 ) / 2 ) = 𝑖 ) |
| 188 | 187 | oveq1d | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( ( 2 · 𝑖 ) / 2 ) − ( 1 / 2 ) ) = ( 𝑖 − ( 1 / 2 ) ) ) |
| 189 | 185 188 | eqtrd | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) = ( 𝑖 − ( 1 / 2 ) ) ) |
| 190 | 148 150 | zsubcld | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 𝑖 − 1 ) ∈ ℤ ) |
| 191 | 160 184 | rereccld | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 1 / 2 ) ∈ ℝ ) |
| 192 | halflt1 | ⊢ ( 1 / 2 ) < 1 | |
| 193 | 192 | a1i | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 1 / 2 ) < 1 ) |
| 194 | 191 158 159 193 | ltsub2dd | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 𝑖 − 1 ) < ( 𝑖 − ( 1 / 2 ) ) ) |
| 195 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 196 | rpreccl | ⊢ ( 2 ∈ ℝ+ → ( 1 / 2 ) ∈ ℝ+ ) | |
| 197 | 195 196 | mp1i | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 1 / 2 ) ∈ ℝ+ ) |
| 198 | 159 197 | ltsubrpd | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 𝑖 − ( 1 / 2 ) ) < 𝑖 ) |
| 199 | 186 181 | npcand | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( ( 𝑖 − 1 ) + 1 ) = 𝑖 ) |
| 200 | 198 199 | breqtrrd | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ( 𝑖 − ( 1 / 2 ) ) < ( ( 𝑖 − 1 ) + 1 ) ) |
| 201 | btwnnz | ⊢ ( ( ( 𝑖 − 1 ) ∈ ℤ ∧ ( 𝑖 − 1 ) < ( 𝑖 − ( 1 / 2 ) ) ∧ ( 𝑖 − ( 1 / 2 ) ) < ( ( 𝑖 − 1 ) + 1 ) ) → ¬ ( 𝑖 − ( 1 / 2 ) ) ∈ ℤ ) | |
| 202 | 190 194 200 201 | syl3anc | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ¬ ( 𝑖 − ( 1 / 2 ) ) ∈ ℤ ) |
| 203 | nnz | ⊢ ( ( 𝑖 − ( 1 / 2 ) ) ∈ ℕ → ( 𝑖 − ( 1 / 2 ) ) ∈ ℤ ) | |
| 204 | 202 203 | nsyl | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ¬ ( 𝑖 − ( 1 / 2 ) ) ∈ ℕ ) |
| 205 | 189 204 | eqneltrd | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ¬ ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) ∈ ℕ ) |
| 206 | 205 | intnand | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ¬ ( ( ( 2 · 𝑖 ) − 1 ) ∈ ℕ ∧ ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) ∈ ℕ ) ) |
| 207 | oveq1 | ⊢ ( 𝑛 = ( ( 2 · 𝑖 ) − 1 ) → ( 𝑛 / 2 ) = ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) ) | |
| 208 | 207 | eleq1d | ⊢ ( 𝑛 = ( ( 2 · 𝑖 ) − 1 ) → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) ∈ ℕ ) ) |
| 209 | 208 | elrab | ⊢ ( ( ( 2 · 𝑖 ) − 1 ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ↔ ( ( ( 2 · 𝑖 ) − 1 ) ∈ ℕ ∧ ( ( ( 2 · 𝑖 ) − 1 ) / 2 ) ∈ ℕ ) ) |
| 210 | 206 209 | sylnibr | ⊢ ( 𝑖 ∈ ( 1 ... 𝑘 ) → ¬ ( ( 2 · 𝑖 ) − 1 ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) |
| 211 | 210 | adantl | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ¬ ( ( 2 · 𝑖 ) − 1 ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) |
| 212 | 179 211 | eldifd | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑘 ) ) → ( ( 2 · 𝑖 ) − 1 ) ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 213 | 212 | fmpttd | ⊢ ( 𝑘 ∈ ℕ → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) ⟶ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 214 | eqidd | ⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) = ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ) | |
| 215 | oveq2 | ⊢ ( 𝑖 = 𝑥 → ( 2 · 𝑖 ) = ( 2 · 𝑥 ) ) | |
| 216 | 215 | oveq1d | ⊢ ( 𝑖 = 𝑥 → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑥 ) − 1 ) ) |
| 217 | 216 | adantl | ⊢ ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑖 = 𝑥 ) → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑥 ) − 1 ) ) |
| 218 | id | ⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → 𝑥 ∈ ( 1 ... 𝑘 ) ) | |
| 219 | ovexd | ⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑥 ) − 1 ) ∈ V ) | |
| 220 | 214 217 218 219 | fvmptd | ⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 2 · 𝑥 ) − 1 ) ) |
| 221 | 220 | eqcomd | ⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑥 ) − 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) ) |
| 222 | 221 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) → ( ( 2 · 𝑥 ) − 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) ) |
| 223 | simpr | ⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) | |
| 224 | eqidd | ⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) = ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ) | |
| 225 | oveq2 | ⊢ ( 𝑖 = 𝑦 → ( 2 · 𝑖 ) = ( 2 · 𝑦 ) ) | |
| 226 | 225 | oveq1d | ⊢ ( 𝑖 = 𝑦 → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
| 227 | 226 | adantl | ⊢ ( ( 𝑦 ∈ ( 1 ... 𝑘 ) ∧ 𝑖 = 𝑦 ) → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
| 228 | id | ⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → 𝑦 ∈ ( 1 ... 𝑘 ) ) | |
| 229 | ovexd | ⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑦 ) − 1 ) ∈ V ) | |
| 230 | 224 227 228 229 | fvmptd | ⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
| 231 | 230 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
| 232 | 222 223 231 | 3eqtrd | ⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) → ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) |
| 233 | 2cnd | ⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℂ ) | |
| 234 | elfzelz | ⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → 𝑥 ∈ ℤ ) | |
| 235 | 234 | zcnd | ⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → 𝑥 ∈ ℂ ) |
| 236 | 233 235 | mulcld | ⊢ ( 𝑥 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑥 ) ∈ ℂ ) |
| 237 | 236 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) → ( 2 · 𝑥 ) ∈ ℂ ) |
| 238 | 2cnd | ⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℂ ) | |
| 239 | elfzelz | ⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → 𝑦 ∈ ℤ ) | |
| 240 | 239 | zcnd | ⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → 𝑦 ∈ ℂ ) |
| 241 | 238 240 | mulcld | ⊢ ( 𝑦 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑦 ) ∈ ℂ ) |
| 242 | 241 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) → ( 2 · 𝑦 ) ∈ ℂ ) |
| 243 | 1cnd | ⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) → 1 ∈ ℂ ) | |
| 244 | simpr | ⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) → ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) | |
| 245 | 237 242 243 244 | subcan2d | ⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) → ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) |
| 246 | 235 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) → 𝑥 ∈ ℂ ) |
| 247 | 240 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) → 𝑦 ∈ ℂ ) |
| 248 | 2cnd | ⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) → 2 ∈ ℂ ) | |
| 249 | 183 | a1i | ⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) → 2 ≠ 0 ) |
| 250 | simpr | ⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) → ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) | |
| 251 | 246 247 248 249 250 | mulcanad | ⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 252 | 245 251 | syldan | ⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 2 · 𝑥 ) − 1 ) = ( ( 2 · 𝑦 ) − 1 ) ) → 𝑥 = 𝑦 ) |
| 253 | 232 252 | syldan | ⊢ ( ( ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ∧ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 254 | 253 | adantll | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ) ∧ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 255 | 254 | ex | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( 𝑥 ∈ ( 1 ... 𝑘 ) ∧ 𝑦 ∈ ( 1 ... 𝑘 ) ) ) → ( ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 256 | 255 | ralrimivva | ⊢ ( 𝑘 ∈ ℕ → ∀ 𝑥 ∈ ( 1 ... 𝑘 ) ∀ 𝑦 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 257 | dff13 | ⊢ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –1-1→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ↔ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) ⟶ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ∀ 𝑥 ∈ ( 1 ... 𝑘 ) ∀ 𝑦 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑥 ) = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 258 | 213 256 257 | sylanbrc | ⊢ ( 𝑘 ∈ ℕ → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –1-1→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 259 | 1zzd | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → 1 ∈ ℤ ) | |
| 260 | 33 | adantr | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → 𝑘 ∈ ℤ ) |
| 261 | 134 | elfzelzd | ⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 ∈ ℤ ) |
| 262 | zeo | ⊢ ( 𝑗 ∈ ℤ → ( ( 𝑗 / 2 ) ∈ ℤ ∨ ( ( 𝑗 + 1 ) / 2 ) ∈ ℤ ) ) | |
| 263 | 261 262 | syl | ⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → ( ( 𝑗 / 2 ) ∈ ℤ ∨ ( ( 𝑗 + 1 ) / 2 ) ∈ ℤ ) ) |
| 264 | 263 | adantl | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( ( 𝑗 / 2 ) ∈ ℤ ∨ ( ( 𝑗 + 1 ) / 2 ) ∈ ℤ ) ) |
| 265 | eldifn | ⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → ¬ 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) | |
| 266 | 134 92 | syl | ⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 ∈ ℕ ) |
| 267 | 266 | adantr | ⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 𝑗 ∈ ℕ ) |
| 268 | simpr | ⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → ( 𝑗 / 2 ) ∈ ℤ ) | |
| 269 | 267 | nnred | ⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 𝑗 ∈ ℝ ) |
| 270 | 39 | a1i | ⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 2 ∈ ℝ ) |
| 271 | 267 | nngt0d | ⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 0 < 𝑗 ) |
| 272 | 2pos | ⊢ 0 < 2 | |
| 273 | 272 | a1i | ⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 0 < 2 ) |
| 274 | 269 270 271 273 | divgt0d | ⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 0 < ( 𝑗 / 2 ) ) |
| 275 | elnnz | ⊢ ( ( 𝑗 / 2 ) ∈ ℕ ↔ ( ( 𝑗 / 2 ) ∈ ℤ ∧ 0 < ( 𝑗 / 2 ) ) ) | |
| 276 | 268 274 275 | sylanbrc | ⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → ( 𝑗 / 2 ) ∈ ℕ ) |
| 277 | oveq1 | ⊢ ( 𝑛 = 𝑗 → ( 𝑛 / 2 ) = ( 𝑗 / 2 ) ) | |
| 278 | 277 | eleq1d | ⊢ ( 𝑛 = 𝑗 → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ( 𝑗 / 2 ) ∈ ℕ ) ) |
| 279 | 278 | elrab | ⊢ ( 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ↔ ( 𝑗 ∈ ℕ ∧ ( 𝑗 / 2 ) ∈ ℕ ) ) |
| 280 | 267 276 279 | sylanbrc | ⊢ ( ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑗 / 2 ) ∈ ℤ ) → 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) |
| 281 | 265 280 | mtand | ⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → ¬ ( 𝑗 / 2 ) ∈ ℤ ) |
| 282 | 281 | adantl | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ¬ ( 𝑗 / 2 ) ∈ ℤ ) |
| 283 | pm2.53 | ⊢ ( ( ( 𝑗 / 2 ) ∈ ℤ ∨ ( ( 𝑗 + 1 ) / 2 ) ∈ ℤ ) → ( ¬ ( 𝑗 / 2 ) ∈ ℤ → ( ( 𝑗 + 1 ) / 2 ) ∈ ℤ ) ) | |
| 284 | 264 282 283 | sylc | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( ( 𝑗 + 1 ) / 2 ) ∈ ℤ ) |
| 285 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 286 | 285 | oveq1i | ⊢ ( ( 1 + 1 ) / 2 ) = ( 2 / 2 ) |
| 287 | 2div2e1 | ⊢ ( 2 / 2 ) = 1 | |
| 288 | 286 287 | eqtr2i | ⊢ 1 = ( ( 1 + 1 ) / 2 ) |
| 289 | 1red | ⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 1 ∈ ℝ ) | |
| 290 | 289 289 | readdcld | ⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( 1 + 1 ) ∈ ℝ ) |
| 291 | 92 | nnred | ⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 𝑗 ∈ ℝ ) |
| 292 | 291 289 | readdcld | ⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( 𝑗 + 1 ) ∈ ℝ ) |
| 293 | 195 | a1i | ⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 2 ∈ ℝ+ ) |
| 294 | elfzle1 | ⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 1 ≤ 𝑗 ) | |
| 295 | 289 291 289 294 | leadd1dd | ⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( 1 + 1 ) ≤ ( 𝑗 + 1 ) ) |
| 296 | 290 292 293 295 | lediv1dd | ⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( ( 1 + 1 ) / 2 ) ≤ ( ( 𝑗 + 1 ) / 2 ) ) |
| 297 | 288 296 | eqbrtrid | ⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 1 ≤ ( ( 𝑗 + 1 ) / 2 ) ) |
| 298 | 134 297 | syl | ⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 1 ≤ ( ( 𝑗 + 1 ) / 2 ) ) |
| 299 | 298 | adantl | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → 1 ≤ ( ( 𝑗 + 1 ) / 2 ) ) |
| 300 | elfzel2 | ⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( ( 2 · 𝑘 ) − 1 ) ∈ ℤ ) | |
| 301 | 300 | zred | ⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( ( 2 · 𝑘 ) − 1 ) ∈ ℝ ) |
| 302 | 301 289 | readdcld | ⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) ∈ ℝ ) |
| 303 | elfzle2 | ⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → 𝑗 ≤ ( ( 2 · 𝑘 ) − 1 ) ) | |
| 304 | 291 301 289 303 | leadd1dd | ⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( 𝑗 + 1 ) ≤ ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) ) |
| 305 | 292 302 293 304 | lediv1dd | ⊢ ( 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) → ( ( 𝑗 + 1 ) / 2 ) ≤ ( ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) / 2 ) ) |
| 306 | 305 | adantl | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( 𝑗 + 1 ) / 2 ) ≤ ( ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) / 2 ) ) |
| 307 | 51 | adantr | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( 2 · 𝑘 ) ∈ ℂ ) |
| 308 | 1cnd | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → 1 ∈ ℂ ) | |
| 309 | 307 308 | npcand | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) = ( 2 · 𝑘 ) ) |
| 310 | 309 | oveq1d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) / 2 ) = ( ( 2 · 𝑘 ) / 2 ) ) |
| 311 | 183 | a1i | ⊢ ( 𝑘 ∈ ℕ → 2 ≠ 0 ) |
| 312 | 45 44 311 | divcan3d | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) / 2 ) = 𝑘 ) |
| 313 | 312 | adantr | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( 2 · 𝑘 ) / 2 ) = 𝑘 ) |
| 314 | 310 313 | eqtrd | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( ( ( 2 · 𝑘 ) − 1 ) + 1 ) / 2 ) = 𝑘 ) |
| 315 | 306 314 | breqtrd | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) → ( ( 𝑗 + 1 ) / 2 ) ≤ 𝑘 ) |
| 316 | 134 315 | sylan2 | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( ( 𝑗 + 1 ) / 2 ) ≤ 𝑘 ) |
| 317 | 259 260 284 299 316 | elfzd | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( ( 𝑗 + 1 ) / 2 ) ∈ ( 1 ... 𝑘 ) ) |
| 318 | 266 | nncnd | ⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 ∈ ℂ ) |
| 319 | peano2cn | ⊢ ( 𝑗 ∈ ℂ → ( 𝑗 + 1 ) ∈ ℂ ) | |
| 320 | 2cnd | ⊢ ( 𝑗 ∈ ℂ → 2 ∈ ℂ ) | |
| 321 | 183 | a1i | ⊢ ( 𝑗 ∈ ℂ → 2 ≠ 0 ) |
| 322 | 319 320 321 | divcan2d | ⊢ ( 𝑗 ∈ ℂ → ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) = ( 𝑗 + 1 ) ) |
| 323 | 322 | oveq1d | ⊢ ( 𝑗 ∈ ℂ → ( ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) − 1 ) = ( ( 𝑗 + 1 ) − 1 ) ) |
| 324 | pncan1 | ⊢ ( 𝑗 ∈ ℂ → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 ) | |
| 325 | 323 324 | eqtr2d | ⊢ ( 𝑗 ∈ ℂ → 𝑗 = ( ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) − 1 ) ) |
| 326 | 318 325 | syl | ⊢ ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) → 𝑗 = ( ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) − 1 ) ) |
| 327 | 326 | adantl | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → 𝑗 = ( ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) − 1 ) ) |
| 328 | oveq2 | ⊢ ( 𝑚 = ( ( 𝑗 + 1 ) / 2 ) → ( 2 · 𝑚 ) = ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) ) | |
| 329 | 328 | oveq1d | ⊢ ( 𝑚 = ( ( 𝑗 + 1 ) / 2 ) → ( ( 2 · 𝑚 ) − 1 ) = ( ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) − 1 ) ) |
| 330 | 329 | rspceeqv | ⊢ ( ( ( ( 𝑗 + 1 ) / 2 ) ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · ( ( 𝑗 + 1 ) / 2 ) ) − 1 ) ) → ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) |
| 331 | 317 327 330 | syl2anc | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) |
| 332 | eqidd | ⊢ ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) = ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ) | |
| 333 | oveq2 | ⊢ ( 𝑖 = 𝑚 → ( 2 · 𝑖 ) = ( 2 · 𝑚 ) ) | |
| 334 | 333 | oveq1d | ⊢ ( 𝑖 = 𝑚 → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑚 ) − 1 ) ) |
| 335 | 334 | adantl | ⊢ ( ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) ∧ 𝑖 = 𝑚 ) → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑚 ) − 1 ) ) |
| 336 | simpl | ⊢ ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) → 𝑚 ∈ ( 1 ... 𝑘 ) ) | |
| 337 | ovexd | ⊢ ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) → ( ( 2 · 𝑚 ) − 1 ) ∈ V ) | |
| 338 | 332 335 336 337 | fvmptd | ⊢ ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) = ( ( 2 · 𝑚 ) − 1 ) ) |
| 339 | id | ⊢ ( 𝑗 = ( ( 2 · 𝑚 ) − 1 ) → 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) | |
| 340 | 339 | eqcomd | ⊢ ( 𝑗 = ( ( 2 · 𝑚 ) − 1 ) → ( ( 2 · 𝑚 ) − 1 ) = 𝑗 ) |
| 341 | 340 | adantl | ⊢ ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) → ( ( 2 · 𝑚 ) − 1 ) = 𝑗 ) |
| 342 | 338 341 | eqtr2d | ⊢ ( ( 𝑚 ∈ ( 1 ... 𝑘 ) ∧ 𝑗 = ( ( 2 · 𝑚 ) − 1 ) ) → 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) |
| 343 | 342 | ex | ⊢ ( 𝑚 ∈ ( 1 ... 𝑘 ) → ( 𝑗 = ( ( 2 · 𝑚 ) − 1 ) → 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) ) |
| 344 | 343 | adantl | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ∧ 𝑚 ∈ ( 1 ... 𝑘 ) ) → ( 𝑗 = ( ( 2 · 𝑚 ) − 1 ) → 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) ) |
| 345 | 344 | reximdva | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 2 · 𝑚 ) − 1 ) → ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) ) |
| 346 | 331 345 | mpd | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) |
| 347 | 346 | ralrimiva | ⊢ ( 𝑘 ∈ ℕ → ∀ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) |
| 348 | dffo3 | ⊢ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –onto→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ↔ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) ⟶ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ∀ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∃ 𝑚 ∈ ( 1 ... 𝑘 ) 𝑗 = ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑚 ) ) ) | |
| 349 | 213 347 348 | sylanbrc | ⊢ ( 𝑘 ∈ ℕ → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –onto→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 350 | df-f1o | ⊢ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –1-1-onto→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ↔ ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –1-1→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ∧ ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –onto→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ) | |
| 351 | 258 349 350 | sylanbrc | ⊢ ( 𝑘 ∈ ℕ → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –1-1-onto→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 352 | 351 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) : ( 1 ... 𝑘 ) –1-1-onto→ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) |
| 353 | eqidd | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) = ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ) | |
| 354 | oveq2 | ⊢ ( 𝑖 = 𝑗 → ( 2 · 𝑖 ) = ( 2 · 𝑗 ) ) | |
| 355 | 354 | oveq1d | ⊢ ( 𝑖 = 𝑗 → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑗 ) − 1 ) ) |
| 356 | 355 | adantl | ⊢ ( ( 𝑗 ∈ ( 1 ... 𝑘 ) ∧ 𝑖 = 𝑗 ) → ( ( 2 · 𝑖 ) − 1 ) = ( ( 2 · 𝑗 ) − 1 ) ) |
| 357 | id | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 𝑗 ∈ ( 1 ... 𝑘 ) ) | |
| 358 | ovexd | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑗 ) − 1 ) ∈ V ) | |
| 359 | 353 356 357 358 | fvmptd | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑗 ) = ( ( 2 · 𝑗 ) − 1 ) ) |
| 360 | 359 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑘 ) ↦ ( ( 2 · 𝑖 ) − 1 ) ) ‘ 𝑗 ) = ( ( 2 · 𝑗 ) − 1 ) ) |
| 361 | eleq1w | ⊢ ( 𝑗 = 𝑖 → ( 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ↔ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ) | |
| 362 | 361 | anbi2d | ⊢ ( 𝑗 = 𝑖 → ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) ) ) |
| 363 | 139 | eleq1d | ⊢ ( 𝑗 = 𝑖 → ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑖 ) ∈ ℂ ) ) |
| 364 | 362 363 | imbi12d | ⊢ ( 𝑗 = 𝑖 → ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) ↔ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝐹 ‘ 𝑖 ) ∈ ℂ ) ) ) |
| 365 | 364 136 | chvarvv | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ) → ( 𝐹 ‘ 𝑖 ) ∈ ℂ ) |
| 366 | 143 144 352 360 365 | fsumf1o | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑖 ∈ ( ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ∖ { 𝑛 ∈ ℕ ∣ ( 𝑛 / 2 ) ∈ ℕ } ) ( 𝐹 ‘ 𝑖 ) = Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) |
| 367 | 96 142 366 | 3eqtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) = Σ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) ) |
| 368 | ovex | ⊢ ( ( 2 · 𝑘 ) − 1 ) ∈ V | |
| 369 | 21 | fvmpt2 | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( ( 2 · 𝑘 ) − 1 ) ∈ V ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) = ( ( 2 · 𝑘 ) − 1 ) ) |
| 370 | 368 369 | mpan2 | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) = ( ( 2 · 𝑘 ) − 1 ) ) |
| 371 | 370 | oveq2d | ⊢ ( 𝑘 ∈ ℕ → ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) = ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 372 | 371 | eqcomd | ⊢ ( 𝑘 ∈ ℕ → ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) = ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) |
| 373 | 372 | sumeq1d | ⊢ ( 𝑘 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) = Σ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ( 𝐹 ‘ 𝑗 ) ) |
| 374 | 373 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ( 𝐹 ‘ 𝑗 ) = Σ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ( 𝐹 ‘ 𝑗 ) ) |
| 375 | 367 374 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) = Σ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ( 𝐹 ‘ 𝑗 ) ) |
| 376 | elfznn | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 𝑗 ∈ ℕ ) | |
| 377 | 376 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → 𝑗 ∈ ℕ ) |
| 378 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → 𝐹 : ℕ ⟶ ℂ ) |
| 379 | 31 | a1i | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℤ ) |
| 380 | elfzelz | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 𝑗 ∈ ℤ ) | |
| 381 | 379 380 | zmulcld | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑗 ) ∈ ℤ ) |
| 382 | 1zzd | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 1 ∈ ℤ ) | |
| 383 | 381 382 | zsubcld | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑗 ) − 1 ) ∈ ℤ ) |
| 384 | 0red | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 0 ∈ ℝ ) | |
| 385 | 39 | a1i | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℝ ) |
| 386 | 25 385 | eqeltrid | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( 2 · 1 ) ∈ ℝ ) |
| 387 | 1red | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 1 ∈ ℝ ) | |
| 388 | 386 387 | resubcld | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 1 ) − 1 ) ∈ ℝ ) |
| 389 | 383 | zred | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑗 ) − 1 ) ∈ ℝ ) |
| 390 | 0lt1 | ⊢ 0 < 1 | |
| 391 | 153 | a1i | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 1 = ( ( 2 · 1 ) − 1 ) ) |
| 392 | 390 391 | breqtrid | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 0 < ( ( 2 · 1 ) − 1 ) ) |
| 393 | 381 | zred | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑗 ) ∈ ℝ ) |
| 394 | 376 | nnred | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 𝑗 ∈ ℝ ) |
| 395 | 161 | a1i | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 0 ≤ 2 ) |
| 396 | elfzle1 | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 1 ≤ 𝑗 ) | |
| 397 | 387 394 385 395 396 | lemul2ad | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( 2 · 1 ) ≤ ( 2 · 𝑗 ) ) |
| 398 | 386 393 387 397 | lesub1dd | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 1 ) − 1 ) ≤ ( ( 2 · 𝑗 ) − 1 ) ) |
| 399 | 384 388 389 392 398 | ltletrd | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 0 < ( ( 2 · 𝑗 ) − 1 ) ) |
| 400 | elnnz | ⊢ ( ( ( 2 · 𝑗 ) − 1 ) ∈ ℕ ↔ ( ( ( 2 · 𝑗 ) − 1 ) ∈ ℤ ∧ 0 < ( ( 2 · 𝑗 ) − 1 ) ) ) | |
| 401 | 383 399 400 | sylanbrc | ⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑗 ) − 1 ) ∈ ℕ ) |
| 402 | 401 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 2 · 𝑗 ) − 1 ) ∈ ℕ ) |
| 403 | 378 402 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ∈ ℂ ) |
| 404 | 403 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ∈ ℂ ) |
| 405 | 60 | fveq2d | ⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) = ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) |
| 406 | 405 | cbvmptv | ⊢ ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) |
| 407 | 406 | fvmpt2 | ⊢ ( ( 𝑗 ∈ ℕ ∧ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ∈ ℂ ) → ( ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) |
| 408 | 377 404 407 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) |
| 409 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) | |
| 410 | 409 11 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 411 | 408 410 404 | fsumser | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) = ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ‘ 𝑘 ) ) |
| 412 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 413 | 155 | a1i | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 1 ) ∈ ℝ ) |
| 414 | 1red | ⊢ ( 𝑘 ∈ ℕ → 1 ∈ ℝ ) | |
| 415 | 161 | a1i | ⊢ ( 𝑘 ∈ ℕ → 0 ≤ 2 ) |
| 416 | nnge1 | ⊢ ( 𝑘 ∈ ℕ → 1 ≤ 𝑘 ) | |
| 417 | 414 41 40 415 416 | lemul2ad | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 1 ) ≤ ( 2 · 𝑘 ) ) |
| 418 | 413 42 414 417 | lesub1dd | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 1 ) − 1 ) ≤ ( ( 2 · 𝑘 ) − 1 ) ) |
| 419 | 153 418 | eqbrtrid | ⊢ ( 𝑘 ∈ ℕ → 1 ≤ ( ( 2 · 𝑘 ) − 1 ) ) |
| 420 | eluz2 | ⊢ ( ( ( 2 · 𝑘 ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ↔ ( 1 ∈ ℤ ∧ ( ( 2 · 𝑘 ) − 1 ) ∈ ℤ ∧ 1 ≤ ( ( 2 · 𝑘 ) − 1 ) ) ) | |
| 421 | 37 66 419 420 | syl3anbrc | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 422 | 68 421 | eqeltrd | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 423 | 422 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 424 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → 𝜑 ) | |
| 425 | simpr | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) | |
| 426 | 371 | adantr | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) = ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 427 | 425 426 | eleqtrd | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 428 | 427 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → 𝑗 ∈ ( 1 ... ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 429 | 424 428 94 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 430 | 412 423 429 | fsumser | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ( 𝐹 ‘ 𝑗 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) |
| 431 | 375 411 430 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ‘ 𝑘 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ( 𝑘 ∈ ℕ ↦ ( ( 2 · 𝑘 ) − 1 ) ) ‘ 𝑘 ) ) ) |
| 432 | 4 5 9 10 11 12 14 17 3 30 74 76 431 | climsuse | ⊢ ( 𝜑 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ 𝐵 ) |
| 433 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 434 | 11 12 433 15 | isum | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) = ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) |
| 435 | climrel | ⊢ Rel ⇝ | |
| 436 | 435 | releldmi | ⊢ ( seq 1 ( + , 𝐹 ) ⇝ 𝐵 → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 437 | 3 436 | syl | ⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 438 | climdm | ⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 1 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) | |
| 439 | 437 438 | sylib | ⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) |
| 440 | climuni | ⊢ ( ( seq 1 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ∧ seq 1 ( + , 𝐹 ) ⇝ 𝐵 ) → ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) = 𝐵 ) | |
| 441 | 439 3 440 | syl2anc | ⊢ ( 𝜑 → ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) = 𝐵 ) |
| 442 | 435 | a1i | ⊢ ( 𝜑 → Rel ⇝ ) |
| 443 | releldm | ⊢ ( ( Rel ⇝ ∧ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ 𝐵 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ∈ dom ⇝ ) | |
| 444 | 442 432 443 | syl2anc | ⊢ ( 𝜑 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ∈ dom ⇝ ) |
| 445 | climdm | ⊢ ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ∈ dom ⇝ ↔ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ) ) | |
| 446 | 444 445 | sylib | ⊢ ( 𝜑 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ) ) |
| 447 | 406 | a1i | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) |
| 448 | 447 | seqeq3d | ⊢ ( 𝜑 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) = seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) |
| 449 | 448 | fveq2d | ⊢ ( 𝜑 → ( ⇝ ‘ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ) = ( ⇝ ‘ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) ) |
| 450 | 446 449 | breqtrd | ⊢ ( 𝜑 → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) ) |
| 451 | climuni | ⊢ ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ 𝐵 ∧ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ ( ⇝ ‘ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) ) → 𝐵 = ( ⇝ ‘ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) ) | |
| 452 | 432 450 451 | syl2anc | ⊢ ( 𝜑 → 𝐵 = ( ⇝ ‘ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) ) |
| 453 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) | |
| 454 | eqcom | ⊢ ( 𝑘 = 𝑗 ↔ 𝑗 = 𝑘 ) | |
| 455 | eqcom | ⊢ ( ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) = ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ↔ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) = ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) | |
| 456 | 405 454 455 | 3imtr3i | ⊢ ( 𝑗 = 𝑘 → ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) = ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 457 | 456 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 = 𝑘 ) → ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) = ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 458 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐹 : ℕ ⟶ ℂ ) |
| 459 | 421 11 | eleqtrrdi | ⊢ ( 𝑘 ∈ ℕ → ( ( 2 · 𝑘 ) − 1 ) ∈ ℕ ) |
| 460 | 459 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) − 1 ) ∈ ℕ ) |
| 461 | 458 460 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ∈ ℂ ) |
| 462 | 453 457 409 461 | fvmptd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ‘ 𝑘 ) = ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 463 | 11 12 462 461 | isum | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) = ( ⇝ ‘ seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑗 ) − 1 ) ) ) ) ) ) |
| 464 | 452 463 | eqtr4d | ⊢ ( 𝜑 → 𝐵 = Σ 𝑘 ∈ ℕ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 465 | 434 441 464 | 3eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) |
| 466 | 432 465 | jca | ⊢ ( 𝜑 → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) ⇝ 𝐵 ∧ Σ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ ( 𝐹 ‘ ( ( 2 · 𝑘 ) − 1 ) ) ) ) |