This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subsequence G of a converging sequence F , converges to the same limit. I is the strictly increasing and it is used to index the subsequence. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climsuse.1 | ⊢ Ⅎ 𝑘 𝜑 | |
| climsuse.3 | ⊢ Ⅎ 𝑘 𝐹 | ||
| climsuse.2 | ⊢ Ⅎ 𝑘 𝐺 | ||
| climsuse.4 | ⊢ Ⅎ 𝑘 𝐼 | ||
| climsuse.5 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| climsuse.6 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climsuse.7 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) | ||
| climsuse.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| climsuse.9 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | ||
| climsuse.10 | ⊢ ( 𝜑 → ( 𝐼 ‘ 𝑀 ) ∈ 𝑍 ) | ||
| climsuse.11 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) ) | ||
| climsuse.12 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑌 ) | ||
| climsuse.13 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑘 ) ) ) | ||
| Assertion | climsuse | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climsuse.1 | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | climsuse.3 | ⊢ Ⅎ 𝑘 𝐹 | |
| 3 | climsuse.2 | ⊢ Ⅎ 𝑘 𝐺 | |
| 4 | climsuse.4 | ⊢ Ⅎ 𝑘 𝐼 | |
| 5 | climsuse.5 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 6 | climsuse.6 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 7 | climsuse.7 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑋 ) | |
| 8 | climsuse.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 9 | climsuse.9 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | |
| 10 | climsuse.10 | ⊢ ( 𝜑 → ( 𝐼 ‘ 𝑀 ) ∈ 𝑍 ) | |
| 11 | climsuse.11 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) ) | |
| 12 | climsuse.12 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑌 ) | |
| 13 | climsuse.13 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑘 ) ) ) | |
| 14 | climcl | ⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) | |
| 15 | 9 14 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 16 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 17 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑀 ≤ 𝑗 ) → 𝑗 ∈ ℤ ) | |
| 18 | 6 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ ¬ 𝑀 ≤ 𝑗 ) → 𝑀 ∈ ℤ ) |
| 19 | 17 18 | ifclda | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) → if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ∈ ℤ ) |
| 20 | nfv | ⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) | |
| 21 | nfra1 | ⊢ Ⅎ 𝑖 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) | |
| 22 | 20 21 | nfan | ⊢ Ⅎ 𝑖 ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) |
| 23 | simp-4l | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝜑 ) | |
| 24 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑗 ∈ ℤ ) | |
| 25 | 23 24 | jca | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( 𝜑 ∧ 𝑗 ∈ ℤ ) ) |
| 26 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) | |
| 27 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ 𝑀 ≤ 𝑗 ) → 𝑀 ≤ 𝑗 ) | |
| 28 | 6 | anim1i | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ 𝑀 ≤ 𝑗 ) → ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) |
| 30 | eluz | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ≤ 𝑗 ) ) | |
| 31 | 29 30 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ 𝑀 ≤ 𝑗 ) → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ≤ 𝑗 ) ) |
| 32 | 27 31 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ 𝑀 ≤ 𝑗 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 33 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ¬ 𝑀 ≤ 𝑗 ) → 𝜑 ) | |
| 34 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 35 | 33 6 34 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) ∧ ¬ 𝑀 ≤ 𝑗 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 36 | 32 35 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 37 | uzss | ⊢ ( if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 38 | 36 37 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 39 | 38 5 | sseqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ⊆ 𝑍 ) |
| 40 | 39 | sseld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) → 𝑖 ∈ 𝑍 ) ) |
| 41 | 25 26 40 | sylc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑖 ∈ 𝑍 ) |
| 42 | nfv | ⊢ Ⅎ 𝑘 𝑖 ∈ 𝑍 | |
| 43 | 1 42 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) |
| 44 | nfcv | ⊢ Ⅎ 𝑘 𝑖 | |
| 45 | 3 44 | nffv | ⊢ Ⅎ 𝑘 ( 𝐺 ‘ 𝑖 ) |
| 46 | 4 44 | nffv | ⊢ Ⅎ 𝑘 ( 𝐼 ‘ 𝑖 ) |
| 47 | 2 46 | nffv | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) |
| 48 | 45 47 | nfeq | ⊢ Ⅎ 𝑘 ( 𝐺 ‘ 𝑖 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) |
| 49 | 43 48 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑖 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ) |
| 50 | eleq1 | ⊢ ( 𝑘 = 𝑖 → ( 𝑘 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍 ) ) | |
| 51 | 50 | anbi2d | ⊢ ( 𝑘 = 𝑖 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ) ) |
| 52 | fveq2 | ⊢ ( 𝑘 = 𝑖 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑖 ) ) | |
| 53 | 2fveq3 | ⊢ ( 𝑘 = 𝑖 → ( 𝐹 ‘ ( 𝐼 ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ) | |
| 54 | 52 53 | eqeq12d | ⊢ ( 𝑘 = 𝑖 → ( ( 𝐺 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑘 ) ) ↔ ( 𝐺 ‘ 𝑖 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ) ) |
| 55 | 51 54 | imbi12d | ⊢ ( 𝑘 = 𝑖 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑘 ) ) ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑖 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ) ) ) |
| 56 | 49 55 13 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑖 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ) |
| 57 | 5 | eleq2i | ⊢ ( 𝑖 ∈ 𝑍 ↔ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 58 | 57 | biimpi | ⊢ ( 𝑖 ∈ 𝑍 → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 59 | 58 | adantl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 60 | uzss | ⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑖 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 61 | 59 60 | syl | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑖 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 62 | nfcv | ⊢ Ⅎ 𝑘 ( 𝑖 + 1 ) | |
| 63 | 4 62 | nffv | ⊢ Ⅎ 𝑘 ( 𝐼 ‘ ( 𝑖 + 1 ) ) |
| 64 | nfcv | ⊢ Ⅎ 𝑘 ℤ≥ | |
| 65 | nfcv | ⊢ Ⅎ 𝑘 + | |
| 66 | nfcv | ⊢ Ⅎ 𝑘 1 | |
| 67 | 46 65 66 | nfov | ⊢ Ⅎ 𝑘 ( ( 𝐼 ‘ 𝑖 ) + 1 ) |
| 68 | 64 67 | nffv | ⊢ Ⅎ 𝑘 ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑖 ) + 1 ) ) |
| 69 | 63 68 | nfel | ⊢ Ⅎ 𝑘 ( 𝐼 ‘ ( 𝑖 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑖 ) + 1 ) ) |
| 70 | 43 69 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐼 ‘ ( 𝑖 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑖 ) + 1 ) ) ) |
| 71 | fvoveq1 | ⊢ ( 𝑘 = 𝑖 → ( 𝐼 ‘ ( 𝑘 + 1 ) ) = ( 𝐼 ‘ ( 𝑖 + 1 ) ) ) | |
| 72 | fveq2 | ⊢ ( 𝑘 = 𝑖 → ( 𝐼 ‘ 𝑘 ) = ( 𝐼 ‘ 𝑖 ) ) | |
| 73 | 72 | fvoveq1d | ⊢ ( 𝑘 = 𝑖 → ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) = ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑖 ) + 1 ) ) ) |
| 74 | 71 73 | eleq12d | ⊢ ( 𝑘 = 𝑖 → ( ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) ↔ ( 𝐼 ‘ ( 𝑖 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑖 ) + 1 ) ) ) ) |
| 75 | 51 74 | imbi12d | ⊢ ( 𝑘 = 𝑖 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐼 ‘ ( 𝑖 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑖 ) + 1 ) ) ) ) ) |
| 76 | 70 75 11 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐼 ‘ ( 𝑖 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑖 ) + 1 ) ) ) |
| 77 | 5 6 10 76 | climsuselem1 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑖 ) ) |
| 78 | 61 77 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 79 | 78 5 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 ) |
| 80 | 79 | ex | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝑍 → ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 ) ) |
| 81 | 80 | imdistani | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝜑 ∧ ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 ) ) |
| 82 | 42 | nfci | ⊢ Ⅎ 𝑘 𝑍 |
| 83 | 46 82 | nfel | ⊢ Ⅎ 𝑘 ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 |
| 84 | 1 83 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 ) |
| 85 | 47 | nfel1 | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ℂ |
| 86 | 84 85 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ℂ ) |
| 87 | eleq1 | ⊢ ( 𝑘 = ( 𝐼 ‘ 𝑖 ) → ( 𝑘 ∈ 𝑍 ↔ ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 ) ) | |
| 88 | 87 | anbi2d | ⊢ ( 𝑘 = ( 𝐼 ‘ 𝑖 ) → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 ) ) ) |
| 89 | fveq2 | ⊢ ( 𝑘 = ( 𝐼 ‘ 𝑖 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ) | |
| 90 | 89 | eleq1d | ⊢ ( 𝑘 = ( 𝐼 ‘ 𝑖 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ℂ ) ) |
| 91 | 88 90 | imbi12d | ⊢ ( 𝑘 = ( 𝐼 ‘ 𝑖 ) → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ↔ ( ( 𝜑 ∧ ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ℂ ) ) ) |
| 92 | 46 86 91 8 | vtoclgf | ⊢ ( ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 → ( ( 𝜑 ∧ ( 𝐼 ‘ 𝑖 ) ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ℂ ) ) |
| 93 | 79 81 92 | sylc | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ℂ ) |
| 94 | 56 93 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) |
| 95 | 23 41 94 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( 𝐺 ‘ 𝑖 ) ∈ ℂ ) |
| 96 | 23 41 56 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( 𝐺 ‘ 𝑖 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ) |
| 97 | 96 | fvoveq1d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) − 𝐴 ) ) ) |
| 98 | fveq2 | ⊢ ( 𝑖 = ℎ → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ ℎ ) ) | |
| 99 | 98 | eleq1d | ⊢ ( 𝑖 = ℎ → ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ↔ ( 𝐹 ‘ ℎ ) ∈ ℂ ) ) |
| 100 | 98 | fvoveq1d | ⊢ ( 𝑖 = ℎ → ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) ) |
| 101 | 100 | breq1d | ⊢ ( 𝑖 = ℎ → ( ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) < 𝑥 ) ) |
| 102 | 99 101 | anbi12d | ⊢ ( 𝑖 = ℎ → ( ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ ℎ ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 103 | 102 | cbvralvw | ⊢ ( ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ ℎ ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) < 𝑥 ) ) |
| 104 | 103 | biimpi | ⊢ ( ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) → ∀ ℎ ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ ℎ ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) < 𝑥 ) ) |
| 105 | 104 | ad2antlr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ∀ ℎ ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ ℎ ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) < 𝑥 ) ) |
| 106 | zre | ⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ℝ ) | |
| 107 | 106 | 3ad2ant2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑗 ∈ ℝ ) |
| 108 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) | |
| 109 | eluzelz | ⊢ ( 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) → 𝑖 ∈ ℤ ) | |
| 110 | zre | ⊢ ( 𝑖 ∈ ℤ → 𝑖 ∈ ℝ ) | |
| 111 | 108 109 110 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑖 ∈ ℝ ) |
| 112 | simp1 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝜑 ) | |
| 113 | 6 | zred | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 114 | 112 113 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑀 ∈ ℝ ) |
| 115 | simpl2 | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) ∧ 𝑀 ≤ 𝑗 ) → 𝑗 ∈ ℤ ) | |
| 116 | 115 | zred | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) ∧ 𝑀 ≤ 𝑗 ) → 𝑗 ∈ ℝ ) |
| 117 | 114 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) ∧ ¬ 𝑀 ≤ 𝑗 ) → 𝑀 ∈ ℝ ) |
| 118 | 116 117 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ∈ ℝ ) |
| 119 | max1 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) | |
| 120 | 114 107 119 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑀 ≤ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) |
| 121 | eluzle | ⊢ ( 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) → if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ≤ 𝑖 ) | |
| 122 | 121 | 3ad2ant3 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ≤ 𝑖 ) |
| 123 | 114 118 111 120 122 | letrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑀 ≤ 𝑖 ) |
| 124 | 112 6 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑀 ∈ ℤ ) |
| 125 | 109 | 3ad2ant3 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑖 ∈ ℤ ) |
| 126 | eluz | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ≤ 𝑖 ) ) | |
| 127 | 124 125 126 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ≤ 𝑖 ) ) |
| 128 | 123 127 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 129 | 128 5 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑖 ∈ 𝑍 ) |
| 130 | 112 129 | jca | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ) |
| 131 | eluzelre | ⊢ ( ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐼 ‘ 𝑖 ) ∈ ℝ ) | |
| 132 | 130 78 131 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( 𝐼 ‘ 𝑖 ) ∈ ℝ ) |
| 133 | max2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → 𝑗 ≤ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) | |
| 134 | 114 107 133 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑗 ≤ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) |
| 135 | 107 118 111 134 122 | letrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑗 ≤ 𝑖 ) |
| 136 | eluzle | ⊢ ( ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑖 ) → 𝑖 ≤ ( 𝐼 ‘ 𝑖 ) ) | |
| 137 | 130 77 136 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑖 ≤ ( 𝐼 ‘ 𝑖 ) ) |
| 138 | 107 111 132 135 137 | letrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑗 ≤ ( 𝐼 ‘ 𝑖 ) ) |
| 139 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → 𝑗 ∈ ℤ ) | |
| 140 | eluzelz | ⊢ ( ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑖 ) → ( 𝐼 ‘ 𝑖 ) ∈ ℤ ) | |
| 141 | 130 77 140 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( 𝐼 ‘ 𝑖 ) ∈ ℤ ) |
| 142 | eluz | ⊢ ( ( 𝑗 ∈ ℤ ∧ ( 𝐼 ‘ 𝑖 ) ∈ ℤ ) → ( ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑗 ) ↔ 𝑗 ≤ ( 𝐼 ‘ 𝑖 ) ) ) | |
| 143 | 139 141 142 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑗 ) ↔ 𝑗 ≤ ( 𝐼 ‘ 𝑖 ) ) ) |
| 144 | 138 143 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 145 | 23 24 26 144 | syl3anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 146 | fveq2 | ⊢ ( ℎ = ( 𝐼 ‘ 𝑖 ) → ( 𝐹 ‘ ℎ ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ) | |
| 147 | 146 | eleq1d | ⊢ ( ℎ = ( 𝐼 ‘ 𝑖 ) → ( ( 𝐹 ‘ ℎ ) ∈ ℂ ↔ ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ℂ ) ) |
| 148 | 146 | fvoveq1d | ⊢ ( ℎ = ( 𝐼 ‘ 𝑖 ) → ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) − 𝐴 ) ) ) |
| 149 | 148 | breq1d | ⊢ ( ℎ = ( 𝐼 ‘ 𝑖 ) → ( ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) − 𝐴 ) ) < 𝑥 ) ) |
| 150 | 147 149 | anbi12d | ⊢ ( ℎ = ( 𝐼 ‘ 𝑖 ) → ( ( ( 𝐹 ‘ ℎ ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 151 | 150 | rspccva | ⊢ ( ( ∀ ℎ ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ ℎ ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) < 𝑥 ) ∧ ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) − 𝐴 ) ) < 𝑥 ) ) |
| 152 | 151 | simprd | ⊢ ( ( ∀ ℎ ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ ℎ ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ ℎ ) − 𝐴 ) ) < 𝑥 ) ∧ ( 𝐼 ‘ 𝑖 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) − 𝐴 ) ) < 𝑥 ) |
| 153 | 105 145 152 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ ( 𝐼 ‘ 𝑖 ) ) − 𝐴 ) ) < 𝑥 ) |
| 154 | 97 153 | eqbrtrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) |
| 155 | 95 154 | jca | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) → ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) |
| 156 | 155 | ex | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) → ( 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) → ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 157 | 22 156 | ralrimi | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) → ∀ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) |
| 158 | fveq2 | ⊢ ( 𝑙 = if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) → ( ℤ≥ ‘ 𝑙 ) = ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ) | |
| 159 | 158 | raleqdv | ⊢ ( 𝑙 = if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) → ( ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑙 ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 160 | 159 | rspcev | ⊢ ( ( if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ∈ ℤ ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑗 , 𝑗 , 𝑀 ) ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) → ∃ 𝑙 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑙 ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) |
| 161 | 19 157 160 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ℤ ) ∧ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) → ∃ 𝑙 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑙 ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) |
| 162 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℤ ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) | |
| 163 | 7 162 | clim | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
| 164 | 9 163 | mpbid | ⊢ ( 𝜑 → ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 165 | 164 | simprd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) |
| 166 | 165 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) |
| 167 | 161 166 | r19.29a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑙 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑙 ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) |
| 168 | 167 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ → ∃ 𝑙 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑙 ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 169 | 16 168 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑙 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑙 ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) |
| 170 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℤ ) → ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑖 ) ) | |
| 171 | 12 170 | clim | ⊢ ( 𝜑 → ( 𝐺 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑙 ∈ ℤ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑙 ) ( ( 𝐺 ‘ 𝑖 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑖 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
| 172 | 15 169 171 | mpbir2and | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐴 ) |