This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A series indexed by NN with only odd terms. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumnnodd.1 | |- ( ph -> F : NN --> CC ) |
|
| sumnnodd.even0 | |- ( ( ph /\ k e. NN /\ ( k / 2 ) e. NN ) -> ( F ` k ) = 0 ) |
||
| sumnnodd.sc | |- ( ph -> seq 1 ( + , F ) ~~> B ) |
||
| Assertion | sumnnodd | |- ( ph -> ( seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> B /\ sum_ k e. NN ( F ` k ) = sum_ k e. NN ( F ` ( ( 2 x. k ) - 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumnnodd.1 | |- ( ph -> F : NN --> CC ) |
|
| 2 | sumnnodd.even0 | |- ( ( ph /\ k e. NN /\ ( k / 2 ) e. NN ) -> ( F ` k ) = 0 ) |
|
| 3 | sumnnodd.sc | |- ( ph -> seq 1 ( + , F ) ~~> B ) |
|
| 4 | nfv | |- F/ k ph |
|
| 5 | nfcv | |- F/_ k seq 1 ( + , F ) |
|
| 6 | nfcv | |- F/_ k 1 |
|
| 7 | nfcv | |- F/_ k + |
|
| 8 | nfmpt1 | |- F/_ k ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) |
|
| 9 | 6 7 8 | nfseq | |- F/_ k seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) |
| 10 | nfmpt1 | |- F/_ k ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) |
|
| 11 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 12 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 13 | seqex | |- seq 1 ( + , F ) e. _V |
|
| 14 | 13 | a1i | |- ( ph -> seq 1 ( + , F ) e. _V ) |
| 15 | 1 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( F ` k ) e. CC ) |
| 16 | 11 12 15 | serf | |- ( ph -> seq 1 ( + , F ) : NN --> CC ) |
| 17 | 16 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , F ) ` k ) e. CC ) |
| 18 | 1nn | |- 1 e. NN |
|
| 19 | oveq2 | |- ( k = 1 -> ( 2 x. k ) = ( 2 x. 1 ) ) |
|
| 20 | 19 | oveq1d | |- ( k = 1 -> ( ( 2 x. k ) - 1 ) = ( ( 2 x. 1 ) - 1 ) ) |
| 21 | eqid | |- ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) = ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) |
|
| 22 | ovex | |- ( ( 2 x. 1 ) - 1 ) e. _V |
|
| 23 | 20 21 22 | fvmpt | |- ( 1 e. NN -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` 1 ) = ( ( 2 x. 1 ) - 1 ) ) |
| 24 | 18 23 | ax-mp | |- ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` 1 ) = ( ( 2 x. 1 ) - 1 ) |
| 25 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
| 26 | 25 | oveq1i | |- ( ( 2 x. 1 ) - 1 ) = ( 2 - 1 ) |
| 27 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 28 | 24 26 27 | 3eqtri | |- ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` 1 ) = 1 |
| 29 | 28 18 | eqeltri | |- ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` 1 ) e. NN |
| 30 | 29 | a1i | |- ( ph -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` 1 ) e. NN ) |
| 31 | 2z | |- 2 e. ZZ |
|
| 32 | 31 | a1i | |- ( k e. NN -> 2 e. ZZ ) |
| 33 | nnz | |- ( k e. NN -> k e. ZZ ) |
|
| 34 | 32 33 | zmulcld | |- ( k e. NN -> ( 2 x. k ) e. ZZ ) |
| 35 | 33 | peano2zd | |- ( k e. NN -> ( k + 1 ) e. ZZ ) |
| 36 | 32 35 | zmulcld | |- ( k e. NN -> ( 2 x. ( k + 1 ) ) e. ZZ ) |
| 37 | 1zzd | |- ( k e. NN -> 1 e. ZZ ) |
|
| 38 | 36 37 | zsubcld | |- ( k e. NN -> ( ( 2 x. ( k + 1 ) ) - 1 ) e. ZZ ) |
| 39 | 2re | |- 2 e. RR |
|
| 40 | 39 | a1i | |- ( k e. NN -> 2 e. RR ) |
| 41 | nnre | |- ( k e. NN -> k e. RR ) |
|
| 42 | 40 41 | remulcld | |- ( k e. NN -> ( 2 x. k ) e. RR ) |
| 43 | 42 | lep1d | |- ( k e. NN -> ( 2 x. k ) <_ ( ( 2 x. k ) + 1 ) ) |
| 44 | 2cnd | |- ( k e. NN -> 2 e. CC ) |
|
| 45 | nncn | |- ( k e. NN -> k e. CC ) |
|
| 46 | 1cnd | |- ( k e. NN -> 1 e. CC ) |
|
| 47 | 44 45 46 | adddid | |- ( k e. NN -> ( 2 x. ( k + 1 ) ) = ( ( 2 x. k ) + ( 2 x. 1 ) ) ) |
| 48 | 25 | oveq2i | |- ( ( 2 x. k ) + ( 2 x. 1 ) ) = ( ( 2 x. k ) + 2 ) |
| 49 | 47 48 | eqtrdi | |- ( k e. NN -> ( 2 x. ( k + 1 ) ) = ( ( 2 x. k ) + 2 ) ) |
| 50 | 49 | oveq1d | |- ( k e. NN -> ( ( 2 x. ( k + 1 ) ) - 1 ) = ( ( ( 2 x. k ) + 2 ) - 1 ) ) |
| 51 | 44 45 | mulcld | |- ( k e. NN -> ( 2 x. k ) e. CC ) |
| 52 | 51 44 46 | addsubassd | |- ( k e. NN -> ( ( ( 2 x. k ) + 2 ) - 1 ) = ( ( 2 x. k ) + ( 2 - 1 ) ) ) |
| 53 | 27 | oveq2i | |- ( ( 2 x. k ) + ( 2 - 1 ) ) = ( ( 2 x. k ) + 1 ) |
| 54 | 53 | a1i | |- ( k e. NN -> ( ( 2 x. k ) + ( 2 - 1 ) ) = ( ( 2 x. k ) + 1 ) ) |
| 55 | 50 52 54 | 3eqtrrd | |- ( k e. NN -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. ( k + 1 ) ) - 1 ) ) |
| 56 | 43 55 | breqtrd | |- ( k e. NN -> ( 2 x. k ) <_ ( ( 2 x. ( k + 1 ) ) - 1 ) ) |
| 57 | eluz2 | |- ( ( ( 2 x. ( k + 1 ) ) - 1 ) e. ( ZZ>= ` ( 2 x. k ) ) <-> ( ( 2 x. k ) e. ZZ /\ ( ( 2 x. ( k + 1 ) ) - 1 ) e. ZZ /\ ( 2 x. k ) <_ ( ( 2 x. ( k + 1 ) ) - 1 ) ) ) |
|
| 58 | 34 38 56 57 | syl3anbrc | |- ( k e. NN -> ( ( 2 x. ( k + 1 ) ) - 1 ) e. ( ZZ>= ` ( 2 x. k ) ) ) |
| 59 | oveq2 | |- ( k = j -> ( 2 x. k ) = ( 2 x. j ) ) |
|
| 60 | 59 | oveq1d | |- ( k = j -> ( ( 2 x. k ) - 1 ) = ( ( 2 x. j ) - 1 ) ) |
| 61 | 60 | cbvmptv | |- ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) = ( j e. NN |-> ( ( 2 x. j ) - 1 ) ) |
| 62 | oveq2 | |- ( j = ( k + 1 ) -> ( 2 x. j ) = ( 2 x. ( k + 1 ) ) ) |
|
| 63 | 62 | oveq1d | |- ( j = ( k + 1 ) -> ( ( 2 x. j ) - 1 ) = ( ( 2 x. ( k + 1 ) ) - 1 ) ) |
| 64 | peano2nn | |- ( k e. NN -> ( k + 1 ) e. NN ) |
|
| 65 | 61 63 64 38 | fvmptd3 | |- ( k e. NN -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` ( k + 1 ) ) = ( ( 2 x. ( k + 1 ) ) - 1 ) ) |
| 66 | 34 37 | zsubcld | |- ( k e. NN -> ( ( 2 x. k ) - 1 ) e. ZZ ) |
| 67 | 21 | fvmpt2 | |- ( ( k e. NN /\ ( ( 2 x. k ) - 1 ) e. ZZ ) -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) = ( ( 2 x. k ) - 1 ) ) |
| 68 | 66 67 | mpdan | |- ( k e. NN -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) = ( ( 2 x. k ) - 1 ) ) |
| 69 | 68 | oveq1d | |- ( k e. NN -> ( ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) + 1 ) = ( ( ( 2 x. k ) - 1 ) + 1 ) ) |
| 70 | 51 46 | npcand | |- ( k e. NN -> ( ( ( 2 x. k ) - 1 ) + 1 ) = ( 2 x. k ) ) |
| 71 | 69 70 | eqtrd | |- ( k e. NN -> ( ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) + 1 ) = ( 2 x. k ) ) |
| 72 | 71 | fveq2d | |- ( k e. NN -> ( ZZ>= ` ( ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) + 1 ) ) = ( ZZ>= ` ( 2 x. k ) ) ) |
| 73 | 58 65 72 | 3eltr4d | |- ( k e. NN -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` ( k + 1 ) ) e. ( ZZ>= ` ( ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) + 1 ) ) ) |
| 74 | 73 | adantl | |- ( ( ph /\ k e. NN ) -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` ( k + 1 ) ) e. ( ZZ>= ` ( ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) + 1 ) ) ) |
| 75 | seqex | |- seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) e. _V |
|
| 76 | 75 | a1i | |- ( ph -> seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) e. _V ) |
| 77 | incom | |- ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) = ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
|
| 78 | inss2 | |- ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) C_ { n e. NN | ( n / 2 ) e. NN } |
|
| 79 | ssrin | |- ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) C_ { n e. NN | ( n / 2 ) e. NN } -> ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) C_ ( { n e. NN | ( n / 2 ) e. NN } i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) ) |
|
| 80 | 78 79 | ax-mp | |- ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) C_ ( { n e. NN | ( n / 2 ) e. NN } i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
| 81 | 77 80 | eqsstri | |- ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) C_ ( { n e. NN | ( n / 2 ) e. NN } i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
| 82 | disjdif | |- ( { n e. NN | ( n / 2 ) e. NN } i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) = (/) |
|
| 83 | 81 82 | sseqtri | |- ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) C_ (/) |
| 84 | ss0 | |- ( ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) C_ (/) -> ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) = (/) ) |
|
| 85 | 83 84 | mp1i | |- ( ( ph /\ k e. NN ) -> ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) i^i ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) = (/) ) |
| 86 | uncom | |- ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) u. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) = ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) u. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
|
| 87 | inundif | |- ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) u. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) = ( 1 ... ( ( 2 x. k ) - 1 ) ) |
|
| 88 | 86 87 | eqtr2i | |- ( 1 ... ( ( 2 x. k ) - 1 ) ) = ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) u. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) |
| 89 | 88 | a1i | |- ( ( ph /\ k e. NN ) -> ( 1 ... ( ( 2 x. k ) - 1 ) ) = ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) u. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) ) |
| 90 | fzfid | |- ( ( ph /\ k e. NN ) -> ( 1 ... ( ( 2 x. k ) - 1 ) ) e. Fin ) |
|
| 91 | 1 | adantr | |- ( ( ph /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> F : NN --> CC ) |
| 92 | elfznn | |- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> j e. NN ) |
|
| 93 | 92 | adantl | |- ( ( ph /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> j e. NN ) |
| 94 | 91 93 | ffvelcdmd | |- ( ( ph /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( F ` j ) e. CC ) |
| 95 | 94 | adantlr | |- ( ( ( ph /\ k e. NN ) /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( F ` j ) e. CC ) |
| 96 | 85 89 90 95 | fsumsplit | |- ( ( ph /\ k e. NN ) -> sum_ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ( F ` j ) = ( sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) + sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) ) ) |
| 97 | simpl | |- ( ( ph /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) -> ph ) |
|
| 98 | ssrab2 | |- { n e. NN | ( n / 2 ) e. NN } C_ NN |
|
| 99 | 78 | sseli | |- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) -> j e. { n e. NN | ( n / 2 ) e. NN } ) |
| 100 | 98 99 | sselid | |- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) -> j e. NN ) |
| 101 | 100 | adantl | |- ( ( ph /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) -> j e. NN ) |
| 102 | oveq1 | |- ( k = j -> ( k / 2 ) = ( j / 2 ) ) |
|
| 103 | 102 | eleq1d | |- ( k = j -> ( ( k / 2 ) e. NN <-> ( j / 2 ) e. NN ) ) |
| 104 | oveq1 | |- ( n = k -> ( n / 2 ) = ( k / 2 ) ) |
|
| 105 | 104 | eleq1d | |- ( n = k -> ( ( n / 2 ) e. NN <-> ( k / 2 ) e. NN ) ) |
| 106 | 105 | elrab | |- ( k e. { n e. NN | ( n / 2 ) e. NN } <-> ( k e. NN /\ ( k / 2 ) e. NN ) ) |
| 107 | 106 | simprbi | |- ( k e. { n e. NN | ( n / 2 ) e. NN } -> ( k / 2 ) e. NN ) |
| 108 | 103 107 | vtoclga | |- ( j e. { n e. NN | ( n / 2 ) e. NN } -> ( j / 2 ) e. NN ) |
| 109 | 99 108 | syl | |- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) -> ( j / 2 ) e. NN ) |
| 110 | 109 | adantl | |- ( ( ph /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) -> ( j / 2 ) e. NN ) |
| 111 | eleq1w | |- ( k = j -> ( k e. NN <-> j e. NN ) ) |
|
| 112 | 111 103 | 3anbi23d | |- ( k = j -> ( ( ph /\ k e. NN /\ ( k / 2 ) e. NN ) <-> ( ph /\ j e. NN /\ ( j / 2 ) e. NN ) ) ) |
| 113 | fveqeq2 | |- ( k = j -> ( ( F ` k ) = 0 <-> ( F ` j ) = 0 ) ) |
|
| 114 | 112 113 | imbi12d | |- ( k = j -> ( ( ( ph /\ k e. NN /\ ( k / 2 ) e. NN ) -> ( F ` k ) = 0 ) <-> ( ( ph /\ j e. NN /\ ( j / 2 ) e. NN ) -> ( F ` j ) = 0 ) ) ) |
| 115 | 114 2 | chvarvv | |- ( ( ph /\ j e. NN /\ ( j / 2 ) e. NN ) -> ( F ` j ) = 0 ) |
| 116 | 97 101 110 115 | syl3anc | |- ( ( ph /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ) -> ( F ` j ) = 0 ) |
| 117 | 116 | sumeq2dv | |- ( ph -> sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) = sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) 0 ) |
| 118 | fzfid | |- ( ph -> ( 1 ... ( ( 2 x. k ) - 1 ) ) e. Fin ) |
|
| 119 | inss1 | |- ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) C_ ( 1 ... ( ( 2 x. k ) - 1 ) ) |
|
| 120 | 119 | a1i | |- ( ph -> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) C_ ( 1 ... ( ( 2 x. k ) - 1 ) ) ) |
| 121 | ssfi | |- ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) e. Fin /\ ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) C_ ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) e. Fin ) |
|
| 122 | 118 120 121 | syl2anc | |- ( ph -> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) e. Fin ) |
| 123 | 122 | olcd | |- ( ph -> ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) C_ ( ZZ>= ` C ) \/ ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) e. Fin ) ) |
| 124 | sumz | |- ( ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) C_ ( ZZ>= ` C ) \/ ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) e. Fin ) -> sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) 0 = 0 ) |
|
| 125 | 123 124 | syl | |- ( ph -> sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) 0 = 0 ) |
| 126 | 117 125 | eqtrd | |- ( ph -> sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) = 0 ) |
| 127 | 126 | adantr | |- ( ( ph /\ k e. NN ) -> sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) = 0 ) |
| 128 | 127 | oveq2d | |- ( ( ph /\ k e. NN ) -> ( sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) + sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) ) = ( sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) + 0 ) ) |
| 129 | fzfi | |- ( 1 ... ( ( 2 x. k ) - 1 ) ) e. Fin |
|
| 130 | difss | |- ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) C_ ( 1 ... ( ( 2 x. k ) - 1 ) ) |
|
| 131 | ssfi | |- ( ( ( 1 ... ( ( 2 x. k ) - 1 ) ) e. Fin /\ ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) C_ ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) e. Fin ) |
|
| 132 | 129 130 131 | mp2an | |- ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) e. Fin |
| 133 | 132 | a1i | |- ( ( ph /\ k e. NN ) -> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) e. Fin ) |
| 134 | 130 | sseli | |- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) -> j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) |
| 135 | 134 94 | sylan2 | |- ( ( ph /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( F ` j ) e. CC ) |
| 136 | 135 | adantlr | |- ( ( ( ph /\ k e. NN ) /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( F ` j ) e. CC ) |
| 137 | 133 136 | fsumcl | |- ( ( ph /\ k e. NN ) -> sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) e. CC ) |
| 138 | 137 | addridd | |- ( ( ph /\ k e. NN ) -> ( sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) + 0 ) = sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) ) |
| 139 | fveq2 | |- ( j = i -> ( F ` j ) = ( F ` i ) ) |
|
| 140 | 139 | cbvsumv | |- sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) = sum_ i e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` i ) |
| 141 | 138 140 | eqtrdi | |- ( ( ph /\ k e. NN ) -> ( sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) + 0 ) = sum_ i e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` i ) ) |
| 142 | 128 141 | eqtrd | |- ( ( ph /\ k e. NN ) -> ( sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) + sum_ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) i^i { n e. NN | ( n / 2 ) e. NN } ) ( F ` j ) ) = sum_ i e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` i ) ) |
| 143 | fveq2 | |- ( i = ( ( 2 x. j ) - 1 ) -> ( F ` i ) = ( F ` ( ( 2 x. j ) - 1 ) ) ) |
|
| 144 | fzfid | |- ( ( ph /\ k e. NN ) -> ( 1 ... k ) e. Fin ) |
|
| 145 | 1zzd | |- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> 1 e. ZZ ) |
|
| 146 | 66 | adantr | |- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> ( ( 2 x. k ) - 1 ) e. ZZ ) |
| 147 | 31 | a1i | |- ( i e. ( 1 ... k ) -> 2 e. ZZ ) |
| 148 | elfzelz | |- ( i e. ( 1 ... k ) -> i e. ZZ ) |
|
| 149 | 147 148 | zmulcld | |- ( i e. ( 1 ... k ) -> ( 2 x. i ) e. ZZ ) |
| 150 | 1zzd | |- ( i e. ( 1 ... k ) -> 1 e. ZZ ) |
|
| 151 | 149 150 | zsubcld | |- ( i e. ( 1 ... k ) -> ( ( 2 x. i ) - 1 ) e. ZZ ) |
| 152 | 151 | adantl | |- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> ( ( 2 x. i ) - 1 ) e. ZZ ) |
| 153 | 26 27 | eqtr2i | |- 1 = ( ( 2 x. 1 ) - 1 ) |
| 154 | 1re | |- 1 e. RR |
|
| 155 | 39 154 | remulcli | |- ( 2 x. 1 ) e. RR |
| 156 | 155 | a1i | |- ( i e. ( 1 ... k ) -> ( 2 x. 1 ) e. RR ) |
| 157 | 149 | zred | |- ( i e. ( 1 ... k ) -> ( 2 x. i ) e. RR ) |
| 158 | 1red | |- ( i e. ( 1 ... k ) -> 1 e. RR ) |
|
| 159 | 148 | zred | |- ( i e. ( 1 ... k ) -> i e. RR ) |
| 160 | 39 | a1i | |- ( i e. ( 1 ... k ) -> 2 e. RR ) |
| 161 | 0le2 | |- 0 <_ 2 |
|
| 162 | 161 | a1i | |- ( i e. ( 1 ... k ) -> 0 <_ 2 ) |
| 163 | elfzle1 | |- ( i e. ( 1 ... k ) -> 1 <_ i ) |
|
| 164 | 158 159 160 162 163 | lemul2ad | |- ( i e. ( 1 ... k ) -> ( 2 x. 1 ) <_ ( 2 x. i ) ) |
| 165 | 156 157 158 164 | lesub1dd | |- ( i e. ( 1 ... k ) -> ( ( 2 x. 1 ) - 1 ) <_ ( ( 2 x. i ) - 1 ) ) |
| 166 | 153 165 | eqbrtrid | |- ( i e. ( 1 ... k ) -> 1 <_ ( ( 2 x. i ) - 1 ) ) |
| 167 | 166 | adantl | |- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> 1 <_ ( ( 2 x. i ) - 1 ) ) |
| 168 | 157 | adantl | |- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> ( 2 x. i ) e. RR ) |
| 169 | 42 | adantr | |- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> ( 2 x. k ) e. RR ) |
| 170 | 1red | |- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> 1 e. RR ) |
|
| 171 | 159 | adantl | |- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> i e. RR ) |
| 172 | 41 | adantr | |- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> k e. RR ) |
| 173 | 39 | a1i | |- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> 2 e. RR ) |
| 174 | 161 | a1i | |- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> 0 <_ 2 ) |
| 175 | elfzle2 | |- ( i e. ( 1 ... k ) -> i <_ k ) |
|
| 176 | 175 | adantl | |- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> i <_ k ) |
| 177 | 171 172 173 174 176 | lemul2ad | |- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> ( 2 x. i ) <_ ( 2 x. k ) ) |
| 178 | 168 169 170 177 | lesub1dd | |- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> ( ( 2 x. i ) - 1 ) <_ ( ( 2 x. k ) - 1 ) ) |
| 179 | 145 146 152 167 178 | elfzd | |- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> ( ( 2 x. i ) - 1 ) e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) |
| 180 | 149 | zcnd | |- ( i e. ( 1 ... k ) -> ( 2 x. i ) e. CC ) |
| 181 | 1cnd | |- ( i e. ( 1 ... k ) -> 1 e. CC ) |
|
| 182 | 2cnd | |- ( i e. ( 1 ... k ) -> 2 e. CC ) |
|
| 183 | 2ne0 | |- 2 =/= 0 |
|
| 184 | 183 | a1i | |- ( i e. ( 1 ... k ) -> 2 =/= 0 ) |
| 185 | 180 181 182 184 | divsubdird | |- ( i e. ( 1 ... k ) -> ( ( ( 2 x. i ) - 1 ) / 2 ) = ( ( ( 2 x. i ) / 2 ) - ( 1 / 2 ) ) ) |
| 186 | 148 | zcnd | |- ( i e. ( 1 ... k ) -> i e. CC ) |
| 187 | 186 182 184 | divcan3d | |- ( i e. ( 1 ... k ) -> ( ( 2 x. i ) / 2 ) = i ) |
| 188 | 187 | oveq1d | |- ( i e. ( 1 ... k ) -> ( ( ( 2 x. i ) / 2 ) - ( 1 / 2 ) ) = ( i - ( 1 / 2 ) ) ) |
| 189 | 185 188 | eqtrd | |- ( i e. ( 1 ... k ) -> ( ( ( 2 x. i ) - 1 ) / 2 ) = ( i - ( 1 / 2 ) ) ) |
| 190 | 148 150 | zsubcld | |- ( i e. ( 1 ... k ) -> ( i - 1 ) e. ZZ ) |
| 191 | 160 184 | rereccld | |- ( i e. ( 1 ... k ) -> ( 1 / 2 ) e. RR ) |
| 192 | halflt1 | |- ( 1 / 2 ) < 1 |
|
| 193 | 192 | a1i | |- ( i e. ( 1 ... k ) -> ( 1 / 2 ) < 1 ) |
| 194 | 191 158 159 193 | ltsub2dd | |- ( i e. ( 1 ... k ) -> ( i - 1 ) < ( i - ( 1 / 2 ) ) ) |
| 195 | 2rp | |- 2 e. RR+ |
|
| 196 | rpreccl | |- ( 2 e. RR+ -> ( 1 / 2 ) e. RR+ ) |
|
| 197 | 195 196 | mp1i | |- ( i e. ( 1 ... k ) -> ( 1 / 2 ) e. RR+ ) |
| 198 | 159 197 | ltsubrpd | |- ( i e. ( 1 ... k ) -> ( i - ( 1 / 2 ) ) < i ) |
| 199 | 186 181 | npcand | |- ( i e. ( 1 ... k ) -> ( ( i - 1 ) + 1 ) = i ) |
| 200 | 198 199 | breqtrrd | |- ( i e. ( 1 ... k ) -> ( i - ( 1 / 2 ) ) < ( ( i - 1 ) + 1 ) ) |
| 201 | btwnnz | |- ( ( ( i - 1 ) e. ZZ /\ ( i - 1 ) < ( i - ( 1 / 2 ) ) /\ ( i - ( 1 / 2 ) ) < ( ( i - 1 ) + 1 ) ) -> -. ( i - ( 1 / 2 ) ) e. ZZ ) |
|
| 202 | 190 194 200 201 | syl3anc | |- ( i e. ( 1 ... k ) -> -. ( i - ( 1 / 2 ) ) e. ZZ ) |
| 203 | nnz | |- ( ( i - ( 1 / 2 ) ) e. NN -> ( i - ( 1 / 2 ) ) e. ZZ ) |
|
| 204 | 202 203 | nsyl | |- ( i e. ( 1 ... k ) -> -. ( i - ( 1 / 2 ) ) e. NN ) |
| 205 | 189 204 | eqneltrd | |- ( i e. ( 1 ... k ) -> -. ( ( ( 2 x. i ) - 1 ) / 2 ) e. NN ) |
| 206 | 205 | intnand | |- ( i e. ( 1 ... k ) -> -. ( ( ( 2 x. i ) - 1 ) e. NN /\ ( ( ( 2 x. i ) - 1 ) / 2 ) e. NN ) ) |
| 207 | oveq1 | |- ( n = ( ( 2 x. i ) - 1 ) -> ( n / 2 ) = ( ( ( 2 x. i ) - 1 ) / 2 ) ) |
|
| 208 | 207 | eleq1d | |- ( n = ( ( 2 x. i ) - 1 ) -> ( ( n / 2 ) e. NN <-> ( ( ( 2 x. i ) - 1 ) / 2 ) e. NN ) ) |
| 209 | 208 | elrab | |- ( ( ( 2 x. i ) - 1 ) e. { n e. NN | ( n / 2 ) e. NN } <-> ( ( ( 2 x. i ) - 1 ) e. NN /\ ( ( ( 2 x. i ) - 1 ) / 2 ) e. NN ) ) |
| 210 | 206 209 | sylnibr | |- ( i e. ( 1 ... k ) -> -. ( ( 2 x. i ) - 1 ) e. { n e. NN | ( n / 2 ) e. NN } ) |
| 211 | 210 | adantl | |- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> -. ( ( 2 x. i ) - 1 ) e. { n e. NN | ( n / 2 ) e. NN } ) |
| 212 | 179 211 | eldifd | |- ( ( k e. NN /\ i e. ( 1 ... k ) ) -> ( ( 2 x. i ) - 1 ) e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
| 213 | 212 | fmpttd | |- ( k e. NN -> ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) --> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
| 214 | eqidd | |- ( x e. ( 1 ... k ) -> ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) = ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ) |
|
| 215 | oveq2 | |- ( i = x -> ( 2 x. i ) = ( 2 x. x ) ) |
|
| 216 | 215 | oveq1d | |- ( i = x -> ( ( 2 x. i ) - 1 ) = ( ( 2 x. x ) - 1 ) ) |
| 217 | 216 | adantl | |- ( ( x e. ( 1 ... k ) /\ i = x ) -> ( ( 2 x. i ) - 1 ) = ( ( 2 x. x ) - 1 ) ) |
| 218 | id | |- ( x e. ( 1 ... k ) -> x e. ( 1 ... k ) ) |
|
| 219 | ovexd | |- ( x e. ( 1 ... k ) -> ( ( 2 x. x ) - 1 ) e. _V ) |
|
| 220 | 214 217 218 219 | fvmptd | |- ( x e. ( 1 ... k ) -> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( 2 x. x ) - 1 ) ) |
| 221 | 220 | eqcomd | |- ( x e. ( 1 ... k ) -> ( ( 2 x. x ) - 1 ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) ) |
| 222 | 221 | ad2antrr | |- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) ) -> ( ( 2 x. x ) - 1 ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) ) |
| 223 | simpr | |- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) ) -> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) ) |
|
| 224 | eqidd | |- ( y e. ( 1 ... k ) -> ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) = ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ) |
|
| 225 | oveq2 | |- ( i = y -> ( 2 x. i ) = ( 2 x. y ) ) |
|
| 226 | 225 | oveq1d | |- ( i = y -> ( ( 2 x. i ) - 1 ) = ( ( 2 x. y ) - 1 ) ) |
| 227 | 226 | adantl | |- ( ( y e. ( 1 ... k ) /\ i = y ) -> ( ( 2 x. i ) - 1 ) = ( ( 2 x. y ) - 1 ) ) |
| 228 | id | |- ( y e. ( 1 ... k ) -> y e. ( 1 ... k ) ) |
|
| 229 | ovexd | |- ( y e. ( 1 ... k ) -> ( ( 2 x. y ) - 1 ) e. _V ) |
|
| 230 | 224 227 228 229 | fvmptd | |- ( y e. ( 1 ... k ) -> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) = ( ( 2 x. y ) - 1 ) ) |
| 231 | 230 | ad2antlr | |- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) ) -> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) = ( ( 2 x. y ) - 1 ) ) |
| 232 | 222 223 231 | 3eqtrd | |- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) ) -> ( ( 2 x. x ) - 1 ) = ( ( 2 x. y ) - 1 ) ) |
| 233 | 2cnd | |- ( x e. ( 1 ... k ) -> 2 e. CC ) |
|
| 234 | elfzelz | |- ( x e. ( 1 ... k ) -> x e. ZZ ) |
|
| 235 | 234 | zcnd | |- ( x e. ( 1 ... k ) -> x e. CC ) |
| 236 | 233 235 | mulcld | |- ( x e. ( 1 ... k ) -> ( 2 x. x ) e. CC ) |
| 237 | 236 | ad2antrr | |- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( 2 x. x ) - 1 ) = ( ( 2 x. y ) - 1 ) ) -> ( 2 x. x ) e. CC ) |
| 238 | 2cnd | |- ( y e. ( 1 ... k ) -> 2 e. CC ) |
|
| 239 | elfzelz | |- ( y e. ( 1 ... k ) -> y e. ZZ ) |
|
| 240 | 239 | zcnd | |- ( y e. ( 1 ... k ) -> y e. CC ) |
| 241 | 238 240 | mulcld | |- ( y e. ( 1 ... k ) -> ( 2 x. y ) e. CC ) |
| 242 | 241 | ad2antlr | |- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( 2 x. x ) - 1 ) = ( ( 2 x. y ) - 1 ) ) -> ( 2 x. y ) e. CC ) |
| 243 | 1cnd | |- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( 2 x. x ) - 1 ) = ( ( 2 x. y ) - 1 ) ) -> 1 e. CC ) |
|
| 244 | simpr | |- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( 2 x. x ) - 1 ) = ( ( 2 x. y ) - 1 ) ) -> ( ( 2 x. x ) - 1 ) = ( ( 2 x. y ) - 1 ) ) |
|
| 245 | 237 242 243 244 | subcan2d | |- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( 2 x. x ) - 1 ) = ( ( 2 x. y ) - 1 ) ) -> ( 2 x. x ) = ( 2 x. y ) ) |
| 246 | 235 | ad2antrr | |- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( 2 x. x ) = ( 2 x. y ) ) -> x e. CC ) |
| 247 | 240 | ad2antlr | |- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( 2 x. x ) = ( 2 x. y ) ) -> y e. CC ) |
| 248 | 2cnd | |- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( 2 x. x ) = ( 2 x. y ) ) -> 2 e. CC ) |
|
| 249 | 183 | a1i | |- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( 2 x. x ) = ( 2 x. y ) ) -> 2 =/= 0 ) |
| 250 | simpr | |- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( 2 x. x ) = ( 2 x. y ) ) -> ( 2 x. x ) = ( 2 x. y ) ) |
|
| 251 | 246 247 248 249 250 | mulcanad | |- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( 2 x. x ) = ( 2 x. y ) ) -> x = y ) |
| 252 | 245 251 | syldan | |- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( 2 x. x ) - 1 ) = ( ( 2 x. y ) - 1 ) ) -> x = y ) |
| 253 | 232 252 | syldan | |- ( ( ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) /\ ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) ) -> x = y ) |
| 254 | 253 | adantll | |- ( ( ( k e. NN /\ ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) ) /\ ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) ) -> x = y ) |
| 255 | 254 | ex | |- ( ( k e. NN /\ ( x e. ( 1 ... k ) /\ y e. ( 1 ... k ) ) ) -> ( ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) -> x = y ) ) |
| 256 | 255 | ralrimivva | |- ( k e. NN -> A. x e. ( 1 ... k ) A. y e. ( 1 ... k ) ( ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) -> x = y ) ) |
| 257 | dff13 | |- ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) -1-1-> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) <-> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) --> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ A. x e. ( 1 ... k ) A. y e. ( 1 ... k ) ( ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` x ) = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` y ) -> x = y ) ) ) |
|
| 258 | 213 256 257 | sylanbrc | |- ( k e. NN -> ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) -1-1-> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
| 259 | 1zzd | |- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> 1 e. ZZ ) |
|
| 260 | 33 | adantr | |- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> k e. ZZ ) |
| 261 | 134 | elfzelzd | |- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) -> j e. ZZ ) |
| 262 | zeo | |- ( j e. ZZ -> ( ( j / 2 ) e. ZZ \/ ( ( j + 1 ) / 2 ) e. ZZ ) ) |
|
| 263 | 261 262 | syl | |- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) -> ( ( j / 2 ) e. ZZ \/ ( ( j + 1 ) / 2 ) e. ZZ ) ) |
| 264 | 263 | adantl | |- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( ( j / 2 ) e. ZZ \/ ( ( j + 1 ) / 2 ) e. ZZ ) ) |
| 265 | eldifn | |- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) -> -. j e. { n e. NN | ( n / 2 ) e. NN } ) |
|
| 266 | 134 92 | syl | |- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) -> j e. NN ) |
| 267 | 266 | adantr | |- ( ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( j / 2 ) e. ZZ ) -> j e. NN ) |
| 268 | simpr | |- ( ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( j / 2 ) e. ZZ ) -> ( j / 2 ) e. ZZ ) |
|
| 269 | 267 | nnred | |- ( ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( j / 2 ) e. ZZ ) -> j e. RR ) |
| 270 | 39 | a1i | |- ( ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( j / 2 ) e. ZZ ) -> 2 e. RR ) |
| 271 | 267 | nngt0d | |- ( ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( j / 2 ) e. ZZ ) -> 0 < j ) |
| 272 | 2pos | |- 0 < 2 |
|
| 273 | 272 | a1i | |- ( ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( j / 2 ) e. ZZ ) -> 0 < 2 ) |
| 274 | 269 270 271 273 | divgt0d | |- ( ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( j / 2 ) e. ZZ ) -> 0 < ( j / 2 ) ) |
| 275 | elnnz | |- ( ( j / 2 ) e. NN <-> ( ( j / 2 ) e. ZZ /\ 0 < ( j / 2 ) ) ) |
|
| 276 | 268 274 275 | sylanbrc | |- ( ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( j / 2 ) e. ZZ ) -> ( j / 2 ) e. NN ) |
| 277 | oveq1 | |- ( n = j -> ( n / 2 ) = ( j / 2 ) ) |
|
| 278 | 277 | eleq1d | |- ( n = j -> ( ( n / 2 ) e. NN <-> ( j / 2 ) e. NN ) ) |
| 279 | 278 | elrab | |- ( j e. { n e. NN | ( n / 2 ) e. NN } <-> ( j e. NN /\ ( j / 2 ) e. NN ) ) |
| 280 | 267 276 279 | sylanbrc | |- ( ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( j / 2 ) e. ZZ ) -> j e. { n e. NN | ( n / 2 ) e. NN } ) |
| 281 | 265 280 | mtand | |- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) -> -. ( j / 2 ) e. ZZ ) |
| 282 | 281 | adantl | |- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> -. ( j / 2 ) e. ZZ ) |
| 283 | pm2.53 | |- ( ( ( j / 2 ) e. ZZ \/ ( ( j + 1 ) / 2 ) e. ZZ ) -> ( -. ( j / 2 ) e. ZZ -> ( ( j + 1 ) / 2 ) e. ZZ ) ) |
|
| 284 | 264 282 283 | sylc | |- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( ( j + 1 ) / 2 ) e. ZZ ) |
| 285 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 286 | 285 | oveq1i | |- ( ( 1 + 1 ) / 2 ) = ( 2 / 2 ) |
| 287 | 2div2e1 | |- ( 2 / 2 ) = 1 |
|
| 288 | 286 287 | eqtr2i | |- 1 = ( ( 1 + 1 ) / 2 ) |
| 289 | 1red | |- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> 1 e. RR ) |
|
| 290 | 289 289 | readdcld | |- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> ( 1 + 1 ) e. RR ) |
| 291 | 92 | nnred | |- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> j e. RR ) |
| 292 | 291 289 | readdcld | |- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> ( j + 1 ) e. RR ) |
| 293 | 195 | a1i | |- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> 2 e. RR+ ) |
| 294 | elfzle1 | |- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> 1 <_ j ) |
|
| 295 | 289 291 289 294 | leadd1dd | |- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> ( 1 + 1 ) <_ ( j + 1 ) ) |
| 296 | 290 292 293 295 | lediv1dd | |- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> ( ( 1 + 1 ) / 2 ) <_ ( ( j + 1 ) / 2 ) ) |
| 297 | 288 296 | eqbrtrid | |- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> 1 <_ ( ( j + 1 ) / 2 ) ) |
| 298 | 134 297 | syl | |- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) -> 1 <_ ( ( j + 1 ) / 2 ) ) |
| 299 | 298 | adantl | |- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> 1 <_ ( ( j + 1 ) / 2 ) ) |
| 300 | elfzel2 | |- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> ( ( 2 x. k ) - 1 ) e. ZZ ) |
|
| 301 | 300 | zred | |- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> ( ( 2 x. k ) - 1 ) e. RR ) |
| 302 | 301 289 | readdcld | |- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> ( ( ( 2 x. k ) - 1 ) + 1 ) e. RR ) |
| 303 | elfzle2 | |- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> j <_ ( ( 2 x. k ) - 1 ) ) |
|
| 304 | 291 301 289 303 | leadd1dd | |- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> ( j + 1 ) <_ ( ( ( 2 x. k ) - 1 ) + 1 ) ) |
| 305 | 292 302 293 304 | lediv1dd | |- ( j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) -> ( ( j + 1 ) / 2 ) <_ ( ( ( ( 2 x. k ) - 1 ) + 1 ) / 2 ) ) |
| 306 | 305 | adantl | |- ( ( k e. NN /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( ( j + 1 ) / 2 ) <_ ( ( ( ( 2 x. k ) - 1 ) + 1 ) / 2 ) ) |
| 307 | 51 | adantr | |- ( ( k e. NN /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( 2 x. k ) e. CC ) |
| 308 | 1cnd | |- ( ( k e. NN /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> 1 e. CC ) |
|
| 309 | 307 308 | npcand | |- ( ( k e. NN /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( ( ( 2 x. k ) - 1 ) + 1 ) = ( 2 x. k ) ) |
| 310 | 309 | oveq1d | |- ( ( k e. NN /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( ( ( ( 2 x. k ) - 1 ) + 1 ) / 2 ) = ( ( 2 x. k ) / 2 ) ) |
| 311 | 183 | a1i | |- ( k e. NN -> 2 =/= 0 ) |
| 312 | 45 44 311 | divcan3d | |- ( k e. NN -> ( ( 2 x. k ) / 2 ) = k ) |
| 313 | 312 | adantr | |- ( ( k e. NN /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( ( 2 x. k ) / 2 ) = k ) |
| 314 | 310 313 | eqtrd | |- ( ( k e. NN /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( ( ( ( 2 x. k ) - 1 ) + 1 ) / 2 ) = k ) |
| 315 | 306 314 | breqtrd | |- ( ( k e. NN /\ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) -> ( ( j + 1 ) / 2 ) <_ k ) |
| 316 | 134 315 | sylan2 | |- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( ( j + 1 ) / 2 ) <_ k ) |
| 317 | 259 260 284 299 316 | elfzd | |- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( ( j + 1 ) / 2 ) e. ( 1 ... k ) ) |
| 318 | 266 | nncnd | |- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) -> j e. CC ) |
| 319 | peano2cn | |- ( j e. CC -> ( j + 1 ) e. CC ) |
|
| 320 | 2cnd | |- ( j e. CC -> 2 e. CC ) |
|
| 321 | 183 | a1i | |- ( j e. CC -> 2 =/= 0 ) |
| 322 | 319 320 321 | divcan2d | |- ( j e. CC -> ( 2 x. ( ( j + 1 ) / 2 ) ) = ( j + 1 ) ) |
| 323 | 322 | oveq1d | |- ( j e. CC -> ( ( 2 x. ( ( j + 1 ) / 2 ) ) - 1 ) = ( ( j + 1 ) - 1 ) ) |
| 324 | pncan1 | |- ( j e. CC -> ( ( j + 1 ) - 1 ) = j ) |
|
| 325 | 323 324 | eqtr2d | |- ( j e. CC -> j = ( ( 2 x. ( ( j + 1 ) / 2 ) ) - 1 ) ) |
| 326 | 318 325 | syl | |- ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) -> j = ( ( 2 x. ( ( j + 1 ) / 2 ) ) - 1 ) ) |
| 327 | 326 | adantl | |- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> j = ( ( 2 x. ( ( j + 1 ) / 2 ) ) - 1 ) ) |
| 328 | oveq2 | |- ( m = ( ( j + 1 ) / 2 ) -> ( 2 x. m ) = ( 2 x. ( ( j + 1 ) / 2 ) ) ) |
|
| 329 | 328 | oveq1d | |- ( m = ( ( j + 1 ) / 2 ) -> ( ( 2 x. m ) - 1 ) = ( ( 2 x. ( ( j + 1 ) / 2 ) ) - 1 ) ) |
| 330 | 329 | rspceeqv | |- ( ( ( ( j + 1 ) / 2 ) e. ( 1 ... k ) /\ j = ( ( 2 x. ( ( j + 1 ) / 2 ) ) - 1 ) ) -> E. m e. ( 1 ... k ) j = ( ( 2 x. m ) - 1 ) ) |
| 331 | 317 327 330 | syl2anc | |- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> E. m e. ( 1 ... k ) j = ( ( 2 x. m ) - 1 ) ) |
| 332 | eqidd | |- ( ( m e. ( 1 ... k ) /\ j = ( ( 2 x. m ) - 1 ) ) -> ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) = ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ) |
|
| 333 | oveq2 | |- ( i = m -> ( 2 x. i ) = ( 2 x. m ) ) |
|
| 334 | 333 | oveq1d | |- ( i = m -> ( ( 2 x. i ) - 1 ) = ( ( 2 x. m ) - 1 ) ) |
| 335 | 334 | adantl | |- ( ( ( m e. ( 1 ... k ) /\ j = ( ( 2 x. m ) - 1 ) ) /\ i = m ) -> ( ( 2 x. i ) - 1 ) = ( ( 2 x. m ) - 1 ) ) |
| 336 | simpl | |- ( ( m e. ( 1 ... k ) /\ j = ( ( 2 x. m ) - 1 ) ) -> m e. ( 1 ... k ) ) |
|
| 337 | ovexd | |- ( ( m e. ( 1 ... k ) /\ j = ( ( 2 x. m ) - 1 ) ) -> ( ( 2 x. m ) - 1 ) e. _V ) |
|
| 338 | 332 335 336 337 | fvmptd | |- ( ( m e. ( 1 ... k ) /\ j = ( ( 2 x. m ) - 1 ) ) -> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` m ) = ( ( 2 x. m ) - 1 ) ) |
| 339 | id | |- ( j = ( ( 2 x. m ) - 1 ) -> j = ( ( 2 x. m ) - 1 ) ) |
|
| 340 | 339 | eqcomd | |- ( j = ( ( 2 x. m ) - 1 ) -> ( ( 2 x. m ) - 1 ) = j ) |
| 341 | 340 | adantl | |- ( ( m e. ( 1 ... k ) /\ j = ( ( 2 x. m ) - 1 ) ) -> ( ( 2 x. m ) - 1 ) = j ) |
| 342 | 338 341 | eqtr2d | |- ( ( m e. ( 1 ... k ) /\ j = ( ( 2 x. m ) - 1 ) ) -> j = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` m ) ) |
| 343 | 342 | ex | |- ( m e. ( 1 ... k ) -> ( j = ( ( 2 x. m ) - 1 ) -> j = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` m ) ) ) |
| 344 | 343 | adantl | |- ( ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) /\ m e. ( 1 ... k ) ) -> ( j = ( ( 2 x. m ) - 1 ) -> j = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` m ) ) ) |
| 345 | 344 | reximdva | |- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( E. m e. ( 1 ... k ) j = ( ( 2 x. m ) - 1 ) -> E. m e. ( 1 ... k ) j = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` m ) ) ) |
| 346 | 331 345 | mpd | |- ( ( k e. NN /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> E. m e. ( 1 ... k ) j = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` m ) ) |
| 347 | 346 | ralrimiva | |- ( k e. NN -> A. j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) E. m e. ( 1 ... k ) j = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` m ) ) |
| 348 | dffo3 | |- ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) -onto-> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) <-> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) --> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ A. j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) E. m e. ( 1 ... k ) j = ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` m ) ) ) |
|
| 349 | 213 347 348 | sylanbrc | |- ( k e. NN -> ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) -onto-> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
| 350 | df-f1o | |- ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) -1-1-onto-> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) <-> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) -1-1-> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) /\ ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) -onto-> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) ) |
|
| 351 | 258 349 350 | sylanbrc | |- ( k e. NN -> ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) -1-1-onto-> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
| 352 | 351 | adantl | |- ( ( ph /\ k e. NN ) -> ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) : ( 1 ... k ) -1-1-onto-> ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) |
| 353 | eqidd | |- ( j e. ( 1 ... k ) -> ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) = ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ) |
|
| 354 | oveq2 | |- ( i = j -> ( 2 x. i ) = ( 2 x. j ) ) |
|
| 355 | 354 | oveq1d | |- ( i = j -> ( ( 2 x. i ) - 1 ) = ( ( 2 x. j ) - 1 ) ) |
| 356 | 355 | adantl | |- ( ( j e. ( 1 ... k ) /\ i = j ) -> ( ( 2 x. i ) - 1 ) = ( ( 2 x. j ) - 1 ) ) |
| 357 | id | |- ( j e. ( 1 ... k ) -> j e. ( 1 ... k ) ) |
|
| 358 | ovexd | |- ( j e. ( 1 ... k ) -> ( ( 2 x. j ) - 1 ) e. _V ) |
|
| 359 | 353 356 357 358 | fvmptd | |- ( j e. ( 1 ... k ) -> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` j ) = ( ( 2 x. j ) - 1 ) ) |
| 360 | 359 | adantl | |- ( ( ( ph /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( i e. ( 1 ... k ) |-> ( ( 2 x. i ) - 1 ) ) ` j ) = ( ( 2 x. j ) - 1 ) ) |
| 361 | eleq1w | |- ( j = i -> ( j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) <-> i e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) ) |
|
| 362 | 361 | anbi2d | |- ( j = i -> ( ( ( ph /\ k e. NN ) /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) <-> ( ( ph /\ k e. NN ) /\ i e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) ) ) |
| 363 | 139 | eleq1d | |- ( j = i -> ( ( F ` j ) e. CC <-> ( F ` i ) e. CC ) ) |
| 364 | 362 363 | imbi12d | |- ( j = i -> ( ( ( ( ph /\ k e. NN ) /\ j e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( F ` j ) e. CC ) <-> ( ( ( ph /\ k e. NN ) /\ i e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( F ` i ) e. CC ) ) ) |
| 365 | 364 136 | chvarvv | |- ( ( ( ph /\ k e. NN ) /\ i e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ) -> ( F ` i ) e. CC ) |
| 366 | 143 144 352 360 365 | fsumf1o | |- ( ( ph /\ k e. NN ) -> sum_ i e. ( ( 1 ... ( ( 2 x. k ) - 1 ) ) \ { n e. NN | ( n / 2 ) e. NN } ) ( F ` i ) = sum_ j e. ( 1 ... k ) ( F ` ( ( 2 x. j ) - 1 ) ) ) |
| 367 | 96 142 366 | 3eqtrrd | |- ( ( ph /\ k e. NN ) -> sum_ j e. ( 1 ... k ) ( F ` ( ( 2 x. j ) - 1 ) ) = sum_ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ( F ` j ) ) |
| 368 | ovex | |- ( ( 2 x. k ) - 1 ) e. _V |
|
| 369 | 21 | fvmpt2 | |- ( ( k e. NN /\ ( ( 2 x. k ) - 1 ) e. _V ) -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) = ( ( 2 x. k ) - 1 ) ) |
| 370 | 368 369 | mpan2 | |- ( k e. NN -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) = ( ( 2 x. k ) - 1 ) ) |
| 371 | 370 | oveq2d | |- ( k e. NN -> ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) = ( 1 ... ( ( 2 x. k ) - 1 ) ) ) |
| 372 | 371 | eqcomd | |- ( k e. NN -> ( 1 ... ( ( 2 x. k ) - 1 ) ) = ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) |
| 373 | 372 | sumeq1d | |- ( k e. NN -> sum_ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ( F ` j ) = sum_ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ( F ` j ) ) |
| 374 | 373 | adantl | |- ( ( ph /\ k e. NN ) -> sum_ j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ( F ` j ) = sum_ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ( F ` j ) ) |
| 375 | 367 374 | eqtrd | |- ( ( ph /\ k e. NN ) -> sum_ j e. ( 1 ... k ) ( F ` ( ( 2 x. j ) - 1 ) ) = sum_ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ( F ` j ) ) |
| 376 | elfznn | |- ( j e. ( 1 ... k ) -> j e. NN ) |
|
| 377 | 376 | adantl | |- ( ( ( ph /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> j e. NN ) |
| 378 | 1 | adantr | |- ( ( ph /\ j e. ( 1 ... k ) ) -> F : NN --> CC ) |
| 379 | 31 | a1i | |- ( j e. ( 1 ... k ) -> 2 e. ZZ ) |
| 380 | elfzelz | |- ( j e. ( 1 ... k ) -> j e. ZZ ) |
|
| 381 | 379 380 | zmulcld | |- ( j e. ( 1 ... k ) -> ( 2 x. j ) e. ZZ ) |
| 382 | 1zzd | |- ( j e. ( 1 ... k ) -> 1 e. ZZ ) |
|
| 383 | 381 382 | zsubcld | |- ( j e. ( 1 ... k ) -> ( ( 2 x. j ) - 1 ) e. ZZ ) |
| 384 | 0red | |- ( j e. ( 1 ... k ) -> 0 e. RR ) |
|
| 385 | 39 | a1i | |- ( j e. ( 1 ... k ) -> 2 e. RR ) |
| 386 | 25 385 | eqeltrid | |- ( j e. ( 1 ... k ) -> ( 2 x. 1 ) e. RR ) |
| 387 | 1red | |- ( j e. ( 1 ... k ) -> 1 e. RR ) |
|
| 388 | 386 387 | resubcld | |- ( j e. ( 1 ... k ) -> ( ( 2 x. 1 ) - 1 ) e. RR ) |
| 389 | 383 | zred | |- ( j e. ( 1 ... k ) -> ( ( 2 x. j ) - 1 ) e. RR ) |
| 390 | 0lt1 | |- 0 < 1 |
|
| 391 | 153 | a1i | |- ( j e. ( 1 ... k ) -> 1 = ( ( 2 x. 1 ) - 1 ) ) |
| 392 | 390 391 | breqtrid | |- ( j e. ( 1 ... k ) -> 0 < ( ( 2 x. 1 ) - 1 ) ) |
| 393 | 381 | zred | |- ( j e. ( 1 ... k ) -> ( 2 x. j ) e. RR ) |
| 394 | 376 | nnred | |- ( j e. ( 1 ... k ) -> j e. RR ) |
| 395 | 161 | a1i | |- ( j e. ( 1 ... k ) -> 0 <_ 2 ) |
| 396 | elfzle1 | |- ( j e. ( 1 ... k ) -> 1 <_ j ) |
|
| 397 | 387 394 385 395 396 | lemul2ad | |- ( j e. ( 1 ... k ) -> ( 2 x. 1 ) <_ ( 2 x. j ) ) |
| 398 | 386 393 387 397 | lesub1dd | |- ( j e. ( 1 ... k ) -> ( ( 2 x. 1 ) - 1 ) <_ ( ( 2 x. j ) - 1 ) ) |
| 399 | 384 388 389 392 398 | ltletrd | |- ( j e. ( 1 ... k ) -> 0 < ( ( 2 x. j ) - 1 ) ) |
| 400 | elnnz | |- ( ( ( 2 x. j ) - 1 ) e. NN <-> ( ( ( 2 x. j ) - 1 ) e. ZZ /\ 0 < ( ( 2 x. j ) - 1 ) ) ) |
|
| 401 | 383 399 400 | sylanbrc | |- ( j e. ( 1 ... k ) -> ( ( 2 x. j ) - 1 ) e. NN ) |
| 402 | 401 | adantl | |- ( ( ph /\ j e. ( 1 ... k ) ) -> ( ( 2 x. j ) - 1 ) e. NN ) |
| 403 | 378 402 | ffvelcdmd | |- ( ( ph /\ j e. ( 1 ... k ) ) -> ( F ` ( ( 2 x. j ) - 1 ) ) e. CC ) |
| 404 | 403 | adantlr | |- ( ( ( ph /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( F ` ( ( 2 x. j ) - 1 ) ) e. CC ) |
| 405 | 60 | fveq2d | |- ( k = j -> ( F ` ( ( 2 x. k ) - 1 ) ) = ( F ` ( ( 2 x. j ) - 1 ) ) ) |
| 406 | 405 | cbvmptv | |- ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) = ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) |
| 407 | 406 | fvmpt2 | |- ( ( j e. NN /\ ( F ` ( ( 2 x. j ) - 1 ) ) e. CC ) -> ( ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ` j ) = ( F ` ( ( 2 x. j ) - 1 ) ) ) |
| 408 | 377 404 407 | syl2anc | |- ( ( ( ph /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ` j ) = ( F ` ( ( 2 x. j ) - 1 ) ) ) |
| 409 | simpr | |- ( ( ph /\ k e. NN ) -> k e. NN ) |
|
| 410 | 409 11 | eleqtrdi | |- ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
| 411 | 408 410 404 | fsumser | |- ( ( ph /\ k e. NN ) -> sum_ j e. ( 1 ... k ) ( F ` ( ( 2 x. j ) - 1 ) ) = ( seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ` k ) ) |
| 412 | eqidd | |- ( ( ( ph /\ k e. NN ) /\ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) -> ( F ` j ) = ( F ` j ) ) |
|
| 413 | 155 | a1i | |- ( k e. NN -> ( 2 x. 1 ) e. RR ) |
| 414 | 1red | |- ( k e. NN -> 1 e. RR ) |
|
| 415 | 161 | a1i | |- ( k e. NN -> 0 <_ 2 ) |
| 416 | nnge1 | |- ( k e. NN -> 1 <_ k ) |
|
| 417 | 414 41 40 415 416 | lemul2ad | |- ( k e. NN -> ( 2 x. 1 ) <_ ( 2 x. k ) ) |
| 418 | 413 42 414 417 | lesub1dd | |- ( k e. NN -> ( ( 2 x. 1 ) - 1 ) <_ ( ( 2 x. k ) - 1 ) ) |
| 419 | 153 418 | eqbrtrid | |- ( k e. NN -> 1 <_ ( ( 2 x. k ) - 1 ) ) |
| 420 | eluz2 | |- ( ( ( 2 x. k ) - 1 ) e. ( ZZ>= ` 1 ) <-> ( 1 e. ZZ /\ ( ( 2 x. k ) - 1 ) e. ZZ /\ 1 <_ ( ( 2 x. k ) - 1 ) ) ) |
|
| 421 | 37 66 419 420 | syl3anbrc | |- ( k e. NN -> ( ( 2 x. k ) - 1 ) e. ( ZZ>= ` 1 ) ) |
| 422 | 68 421 | eqeltrd | |- ( k e. NN -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) e. ( ZZ>= ` 1 ) ) |
| 423 | 422 | adantl | |- ( ( ph /\ k e. NN ) -> ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) e. ( ZZ>= ` 1 ) ) |
| 424 | simpll | |- ( ( ( ph /\ k e. NN ) /\ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) -> ph ) |
|
| 425 | simpr | |- ( ( k e. NN /\ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) -> j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) |
|
| 426 | 371 | adantr | |- ( ( k e. NN /\ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) -> ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) = ( 1 ... ( ( 2 x. k ) - 1 ) ) ) |
| 427 | 425 426 | eleqtrd | |- ( ( k e. NN /\ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) -> j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) |
| 428 | 427 | adantll | |- ( ( ( ph /\ k e. NN ) /\ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) -> j e. ( 1 ... ( ( 2 x. k ) - 1 ) ) ) |
| 429 | 424 428 94 | syl2anc | |- ( ( ( ph /\ k e. NN ) /\ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) -> ( F ` j ) e. CC ) |
| 430 | 412 423 429 | fsumser | |- ( ( ph /\ k e. NN ) -> sum_ j e. ( 1 ... ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ( F ` j ) = ( seq 1 ( + , F ) ` ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) |
| 431 | 375 411 430 | 3eqtr3d | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ` k ) = ( seq 1 ( + , F ) ` ( ( k e. NN |-> ( ( 2 x. k ) - 1 ) ) ` k ) ) ) |
| 432 | 4 5 9 10 11 12 14 17 3 30 74 76 431 | climsuse | |- ( ph -> seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> B ) |
| 433 | eqidd | |- ( ( ph /\ k e. NN ) -> ( F ` k ) = ( F ` k ) ) |
|
| 434 | 11 12 433 15 | isum | |- ( ph -> sum_ k e. NN ( F ` k ) = ( ~~> ` seq 1 ( + , F ) ) ) |
| 435 | climrel | |- Rel ~~> |
|
| 436 | 435 | releldmi | |- ( seq 1 ( + , F ) ~~> B -> seq 1 ( + , F ) e. dom ~~> ) |
| 437 | 3 436 | syl | |- ( ph -> seq 1 ( + , F ) e. dom ~~> ) |
| 438 | climdm | |- ( seq 1 ( + , F ) e. dom ~~> <-> seq 1 ( + , F ) ~~> ( ~~> ` seq 1 ( + , F ) ) ) |
|
| 439 | 437 438 | sylib | |- ( ph -> seq 1 ( + , F ) ~~> ( ~~> ` seq 1 ( + , F ) ) ) |
| 440 | climuni | |- ( ( seq 1 ( + , F ) ~~> ( ~~> ` seq 1 ( + , F ) ) /\ seq 1 ( + , F ) ~~> B ) -> ( ~~> ` seq 1 ( + , F ) ) = B ) |
|
| 441 | 439 3 440 | syl2anc | |- ( ph -> ( ~~> ` seq 1 ( + , F ) ) = B ) |
| 442 | 435 | a1i | |- ( ph -> Rel ~~> ) |
| 443 | releldm | |- ( ( Rel ~~> /\ seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> B ) -> seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) e. dom ~~> ) |
|
| 444 | 442 432 443 | syl2anc | |- ( ph -> seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) e. dom ~~> ) |
| 445 | climdm | |- ( seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) e. dom ~~> <-> seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> ( ~~> ` seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ) ) |
|
| 446 | 444 445 | sylib | |- ( ph -> seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> ( ~~> ` seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ) ) |
| 447 | 406 | a1i | |- ( ph -> ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) = ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ) |
| 448 | 447 | seqeq3d | |- ( ph -> seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) = seq 1 ( + , ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ) ) |
| 449 | 448 | fveq2d | |- ( ph -> ( ~~> ` seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ) = ( ~~> ` seq 1 ( + , ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ) ) ) |
| 450 | 446 449 | breqtrd | |- ( ph -> seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> ( ~~> ` seq 1 ( + , ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ) ) ) |
| 451 | climuni | |- ( ( seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> B /\ seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> ( ~~> ` seq 1 ( + , ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ) ) ) -> B = ( ~~> ` seq 1 ( + , ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ) ) ) |
|
| 452 | 432 450 451 | syl2anc | |- ( ph -> B = ( ~~> ` seq 1 ( + , ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ) ) ) |
| 453 | eqidd | |- ( ( ph /\ k e. NN ) -> ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) = ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ) |
|
| 454 | eqcom | |- ( k = j <-> j = k ) |
|
| 455 | eqcom | |- ( ( F ` ( ( 2 x. k ) - 1 ) ) = ( F ` ( ( 2 x. j ) - 1 ) ) <-> ( F ` ( ( 2 x. j ) - 1 ) ) = ( F ` ( ( 2 x. k ) - 1 ) ) ) |
|
| 456 | 405 454 455 | 3imtr3i | |- ( j = k -> ( F ` ( ( 2 x. j ) - 1 ) ) = ( F ` ( ( 2 x. k ) - 1 ) ) ) |
| 457 | 456 | adantl | |- ( ( ( ph /\ k e. NN ) /\ j = k ) -> ( F ` ( ( 2 x. j ) - 1 ) ) = ( F ` ( ( 2 x. k ) - 1 ) ) ) |
| 458 | 1 | adantr | |- ( ( ph /\ k e. NN ) -> F : NN --> CC ) |
| 459 | 421 11 | eleqtrrdi | |- ( k e. NN -> ( ( 2 x. k ) - 1 ) e. NN ) |
| 460 | 459 | adantl | |- ( ( ph /\ k e. NN ) -> ( ( 2 x. k ) - 1 ) e. NN ) |
| 461 | 458 460 | ffvelcdmd | |- ( ( ph /\ k e. NN ) -> ( F ` ( ( 2 x. k ) - 1 ) ) e. CC ) |
| 462 | 453 457 409 461 | fvmptd | |- ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ` k ) = ( F ` ( ( 2 x. k ) - 1 ) ) ) |
| 463 | 11 12 462 461 | isum | |- ( ph -> sum_ k e. NN ( F ` ( ( 2 x. k ) - 1 ) ) = ( ~~> ` seq 1 ( + , ( j e. NN |-> ( F ` ( ( 2 x. j ) - 1 ) ) ) ) ) ) |
| 464 | 452 463 | eqtr4d | |- ( ph -> B = sum_ k e. NN ( F ` ( ( 2 x. k ) - 1 ) ) ) |
| 465 | 434 441 464 | 3eqtrd | |- ( ph -> sum_ k e. NN ( F ` k ) = sum_ k e. NN ( F ` ( ( 2 x. k ) - 1 ) ) ) |
| 466 | 432 465 | jca | |- ( ph -> ( seq 1 ( + , ( k e. NN |-> ( F ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> B /\ sum_ k e. NN ( F ` k ) = sum_ k e. NN ( F ` ( ( 2 x. k ) - 1 ) ) ) ) |