This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqneltrd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| eqneltrd.2 | ⊢ ( 𝜑 → ¬ 𝐵 ∈ 𝐶 ) | ||
| Assertion | eqneltrd | ⊢ ( 𝜑 → ¬ 𝐴 ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqneltrd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | eqneltrd.2 | ⊢ ( 𝜑 → ¬ 𝐵 ∈ 𝐶 ) | |
| 3 | 1 | eleq1d | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
| 4 | 2 3 | mtbird | ⊢ ( 𝜑 → ¬ 𝐴 ∈ 𝐶 ) |