This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is one or greater. (Contributed by NM, 25-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnge1 | ⊢ ( 𝐴 ∈ ℕ → 1 ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝑥 = 1 → ( 1 ≤ 𝑥 ↔ 1 ≤ 1 ) ) | |
| 2 | breq2 | ⊢ ( 𝑥 = 𝑦 → ( 1 ≤ 𝑥 ↔ 1 ≤ 𝑦 ) ) | |
| 3 | breq2 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 1 ≤ 𝑥 ↔ 1 ≤ ( 𝑦 + 1 ) ) ) | |
| 4 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 1 ≤ 𝑥 ↔ 1 ≤ 𝐴 ) ) | |
| 5 | 1le1 | ⊢ 1 ≤ 1 | |
| 6 | nnre | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) | |
| 7 | recn | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) | |
| 8 | 7 | addridd | ⊢ ( 𝑦 ∈ ℝ → ( 𝑦 + 0 ) = 𝑦 ) |
| 9 | 8 | breq2d | ⊢ ( 𝑦 ∈ ℝ → ( 1 ≤ ( 𝑦 + 0 ) ↔ 1 ≤ 𝑦 ) ) |
| 10 | 0lt1 | ⊢ 0 < 1 | |
| 11 | 0re | ⊢ 0 ∈ ℝ | |
| 12 | 1re | ⊢ 1 ∈ ℝ | |
| 13 | axltadd | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 < 1 → ( 𝑦 + 0 ) < ( 𝑦 + 1 ) ) ) | |
| 14 | 11 12 13 | mp3an12 | ⊢ ( 𝑦 ∈ ℝ → ( 0 < 1 → ( 𝑦 + 0 ) < ( 𝑦 + 1 ) ) ) |
| 15 | 10 14 | mpi | ⊢ ( 𝑦 ∈ ℝ → ( 𝑦 + 0 ) < ( 𝑦 + 1 ) ) |
| 16 | readdcl | ⊢ ( ( 𝑦 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝑦 + 0 ) ∈ ℝ ) | |
| 17 | 11 16 | mpan2 | ⊢ ( 𝑦 ∈ ℝ → ( 𝑦 + 0 ) ∈ ℝ ) |
| 18 | peano2re | ⊢ ( 𝑦 ∈ ℝ → ( 𝑦 + 1 ) ∈ ℝ ) | |
| 19 | lttr | ⊢ ( ( ( 𝑦 + 0 ) ∈ ℝ ∧ ( 𝑦 + 1 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( 𝑦 + 0 ) < ( 𝑦 + 1 ) ∧ ( 𝑦 + 1 ) < 1 ) → ( 𝑦 + 0 ) < 1 ) ) | |
| 20 | 12 19 | mp3an3 | ⊢ ( ( ( 𝑦 + 0 ) ∈ ℝ ∧ ( 𝑦 + 1 ) ∈ ℝ ) → ( ( ( 𝑦 + 0 ) < ( 𝑦 + 1 ) ∧ ( 𝑦 + 1 ) < 1 ) → ( 𝑦 + 0 ) < 1 ) ) |
| 21 | 17 18 20 | syl2anc | ⊢ ( 𝑦 ∈ ℝ → ( ( ( 𝑦 + 0 ) < ( 𝑦 + 1 ) ∧ ( 𝑦 + 1 ) < 1 ) → ( 𝑦 + 0 ) < 1 ) ) |
| 22 | 15 21 | mpand | ⊢ ( 𝑦 ∈ ℝ → ( ( 𝑦 + 1 ) < 1 → ( 𝑦 + 0 ) < 1 ) ) |
| 23 | 22 | con3d | ⊢ ( 𝑦 ∈ ℝ → ( ¬ ( 𝑦 + 0 ) < 1 → ¬ ( 𝑦 + 1 ) < 1 ) ) |
| 24 | lenlt | ⊢ ( ( 1 ∈ ℝ ∧ ( 𝑦 + 0 ) ∈ ℝ ) → ( 1 ≤ ( 𝑦 + 0 ) ↔ ¬ ( 𝑦 + 0 ) < 1 ) ) | |
| 25 | 12 17 24 | sylancr | ⊢ ( 𝑦 ∈ ℝ → ( 1 ≤ ( 𝑦 + 0 ) ↔ ¬ ( 𝑦 + 0 ) < 1 ) ) |
| 26 | lenlt | ⊢ ( ( 1 ∈ ℝ ∧ ( 𝑦 + 1 ) ∈ ℝ ) → ( 1 ≤ ( 𝑦 + 1 ) ↔ ¬ ( 𝑦 + 1 ) < 1 ) ) | |
| 27 | 12 18 26 | sylancr | ⊢ ( 𝑦 ∈ ℝ → ( 1 ≤ ( 𝑦 + 1 ) ↔ ¬ ( 𝑦 + 1 ) < 1 ) ) |
| 28 | 23 25 27 | 3imtr4d | ⊢ ( 𝑦 ∈ ℝ → ( 1 ≤ ( 𝑦 + 0 ) → 1 ≤ ( 𝑦 + 1 ) ) ) |
| 29 | 9 28 | sylbird | ⊢ ( 𝑦 ∈ ℝ → ( 1 ≤ 𝑦 → 1 ≤ ( 𝑦 + 1 ) ) ) |
| 30 | 6 29 | syl | ⊢ ( 𝑦 ∈ ℕ → ( 1 ≤ 𝑦 → 1 ≤ ( 𝑦 + 1 ) ) ) |
| 31 | 1 2 3 4 5 30 | nnind | ⊢ ( 𝐴 ∈ ℕ → 1 ≤ 𝐴 ) |