This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfseq.1 | ⊢ Ⅎ 𝑥 𝑀 | |
| nfseq.2 | ⊢ Ⅎ 𝑥 + | ||
| nfseq.3 | ⊢ Ⅎ 𝑥 𝐹 | ||
| Assertion | nfseq | ⊢ Ⅎ 𝑥 seq 𝑀 ( + , 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfseq.1 | ⊢ Ⅎ 𝑥 𝑀 | |
| 2 | nfseq.2 | ⊢ Ⅎ 𝑥 + | |
| 3 | nfseq.3 | ⊢ Ⅎ 𝑥 𝐹 | |
| 4 | df-seq | ⊢ seq 𝑀 ( + , 𝐹 ) = ( rec ( ( 𝑧 ∈ V , 𝑤 ∈ V ↦ 〈 ( 𝑧 + 1 ) , ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) | |
| 5 | nfcv | ⊢ Ⅎ 𝑥 V | |
| 6 | nfcv | ⊢ Ⅎ 𝑥 ( 𝑧 + 1 ) | |
| 7 | nfcv | ⊢ Ⅎ 𝑥 𝑤 | |
| 8 | 3 6 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ ( 𝑧 + 1 ) ) |
| 9 | 7 2 8 | nfov | ⊢ Ⅎ 𝑥 ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) |
| 10 | 6 9 | nfop | ⊢ Ⅎ 𝑥 〈 ( 𝑧 + 1 ) , ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) 〉 |
| 11 | 5 5 10 | nfmpo | ⊢ Ⅎ 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ 〈 ( 𝑧 + 1 ) , ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) 〉 ) |
| 12 | 3 1 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑀 ) |
| 13 | 1 12 | nfop | ⊢ Ⅎ 𝑥 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 |
| 14 | 11 13 | nfrdg | ⊢ Ⅎ 𝑥 rec ( ( 𝑧 ∈ V , 𝑤 ∈ V ↦ 〈 ( 𝑧 + 1 ) , ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) |
| 15 | nfcv | ⊢ Ⅎ 𝑥 ω | |
| 16 | 14 15 | nfima | ⊢ Ⅎ 𝑥 ( rec ( ( 𝑧 ∈ V , 𝑤 ∈ V ↦ 〈 ( 𝑧 + 1 ) , ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) 〉 ) , 〈 𝑀 , ( 𝐹 ‘ 𝑀 ) 〉 ) “ ω ) |
| 17 | 4 16 | nfcxfr | ⊢ Ⅎ 𝑥 seq 𝑀 ( + , 𝐹 ) |