This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnnz | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 2 | orc | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) | |
| 3 | nngt0 | ⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) | |
| 4 | 1 2 3 | jca31 | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) ∧ 0 < 𝑁 ) ) |
| 5 | idd | ⊢ ( ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) → ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) ) | |
| 6 | lt0neg2 | ⊢ ( 𝑁 ∈ ℝ → ( 0 < 𝑁 ↔ - 𝑁 < 0 ) ) | |
| 7 | renegcl | ⊢ ( 𝑁 ∈ ℝ → - 𝑁 ∈ ℝ ) | |
| 8 | 0re | ⊢ 0 ∈ ℝ | |
| 9 | ltnsym | ⊢ ( ( - 𝑁 ∈ ℝ ∧ 0 ∈ ℝ ) → ( - 𝑁 < 0 → ¬ 0 < - 𝑁 ) ) | |
| 10 | 7 8 9 | sylancl | ⊢ ( 𝑁 ∈ ℝ → ( - 𝑁 < 0 → ¬ 0 < - 𝑁 ) ) |
| 11 | 6 10 | sylbid | ⊢ ( 𝑁 ∈ ℝ → ( 0 < 𝑁 → ¬ 0 < - 𝑁 ) ) |
| 12 | 11 | imp | ⊢ ( ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) → ¬ 0 < - 𝑁 ) |
| 13 | nngt0 | ⊢ ( - 𝑁 ∈ ℕ → 0 < - 𝑁 ) | |
| 14 | 12 13 | nsyl | ⊢ ( ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) → ¬ - 𝑁 ∈ ℕ ) |
| 15 | gt0ne0 | ⊢ ( ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) → 𝑁 ≠ 0 ) | |
| 16 | 15 | neneqd | ⊢ ( ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) → ¬ 𝑁 = 0 ) |
| 17 | ioran | ⊢ ( ¬ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ↔ ( ¬ - 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 0 ) ) | |
| 18 | 14 16 17 | sylanbrc | ⊢ ( ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) → ¬ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 19 | 18 | pm2.21d | ⊢ ( ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) → ( ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → 𝑁 ∈ ℕ ) ) |
| 20 | 5 19 | jaod | ⊢ ( ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) → ( ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) → 𝑁 ∈ ℕ ) ) |
| 21 | 20 | ex | ⊢ ( 𝑁 ∈ ℝ → ( 0 < 𝑁 → ( ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) → 𝑁 ∈ ℕ ) ) ) |
| 22 | 21 | com23 | ⊢ ( 𝑁 ∈ ℝ → ( ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) → ( 0 < 𝑁 → 𝑁 ∈ ℕ ) ) ) |
| 23 | 22 | imp31 | ⊢ ( ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) ∧ 0 < 𝑁 ) → 𝑁 ∈ ℕ ) |
| 24 | 4 23 | impbii | ⊢ ( 𝑁 ∈ ℕ ↔ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) ∧ 0 < 𝑁 ) ) |
| 25 | elz | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ) | |
| 26 | 3orrot | ⊢ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ↔ ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 27 | 3orass | ⊢ ( ( 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ↔ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) | |
| 28 | 26 27 | bitri | ⊢ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ↔ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) |
| 29 | 28 | anbi2i | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) ) |
| 30 | 25 29 | bitri | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) ) |
| 31 | 30 | anbi1i | ⊢ ( ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ↔ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ ∨ ( - 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) ) ∧ 0 < 𝑁 ) ) |
| 32 | 24 31 | bitr4i | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |