This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is even or odd. (Contributed by NM, 1-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zeo | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 / 2 ) ∈ ℤ ∨ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ) | |
| 2 | oveq1 | ⊢ ( 𝑁 = 0 → ( 𝑁 / 2 ) = ( 0 / 2 ) ) | |
| 3 | 2cn | ⊢ 2 ∈ ℂ | |
| 4 | 2ne0 | ⊢ 2 ≠ 0 | |
| 5 | 3 4 | div0i | ⊢ ( 0 / 2 ) = 0 |
| 6 | 0z | ⊢ 0 ∈ ℤ | |
| 7 | 5 6 | eqeltri | ⊢ ( 0 / 2 ) ∈ ℤ |
| 8 | 2 7 | eqeltrdi | ⊢ ( 𝑁 = 0 → ( 𝑁 / 2 ) ∈ ℤ ) |
| 9 | 8 | pm2.24d | ⊢ ( 𝑁 = 0 → ( ¬ ( 𝑁 / 2 ) ∈ ℤ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 10 | 9 | adantl | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑁 = 0 ) → ( ¬ ( 𝑁 / 2 ) ∈ ℤ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 11 | nnz | ⊢ ( ( 𝑁 / 2 ) ∈ ℕ → ( 𝑁 / 2 ) ∈ ℤ ) | |
| 12 | 11 | con3i | ⊢ ( ¬ ( 𝑁 / 2 ) ∈ ℤ → ¬ ( 𝑁 / 2 ) ∈ ℕ ) |
| 13 | nneo | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) ∈ ℕ ↔ ¬ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) | |
| 14 | 13 | biimprd | ⊢ ( 𝑁 ∈ ℕ → ( ¬ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ → ( 𝑁 / 2 ) ∈ ℕ ) ) |
| 15 | 14 | con1d | ⊢ ( 𝑁 ∈ ℕ → ( ¬ ( 𝑁 / 2 ) ∈ ℕ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) |
| 16 | nnz | ⊢ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) | |
| 17 | 12 15 16 | syl56 | ⊢ ( 𝑁 ∈ ℕ → ( ¬ ( 𝑁 / 2 ) ∈ ℤ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 18 | 17 | adantl | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ ) → ( ¬ ( 𝑁 / 2 ) ∈ ℤ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 19 | recn | ⊢ ( 𝑁 ∈ ℝ → 𝑁 ∈ ℂ ) | |
| 20 | divneg | ⊢ ( ( 𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → - ( 𝑁 / 2 ) = ( - 𝑁 / 2 ) ) | |
| 21 | 3 4 20 | mp3an23 | ⊢ ( 𝑁 ∈ ℂ → - ( 𝑁 / 2 ) = ( - 𝑁 / 2 ) ) |
| 22 | 19 21 | syl | ⊢ ( 𝑁 ∈ ℝ → - ( 𝑁 / 2 ) = ( - 𝑁 / 2 ) ) |
| 23 | 22 | eleq1d | ⊢ ( 𝑁 ∈ ℝ → ( - ( 𝑁 / 2 ) ∈ ℕ ↔ ( - 𝑁 / 2 ) ∈ ℕ ) ) |
| 24 | nnnegz | ⊢ ( - ( 𝑁 / 2 ) ∈ ℕ → - - ( 𝑁 / 2 ) ∈ ℤ ) | |
| 25 | 23 24 | biimtrrdi | ⊢ ( 𝑁 ∈ ℝ → ( ( - 𝑁 / 2 ) ∈ ℕ → - - ( 𝑁 / 2 ) ∈ ℤ ) ) |
| 26 | 19 | halfcld | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 / 2 ) ∈ ℂ ) |
| 27 | 26 | negnegd | ⊢ ( 𝑁 ∈ ℝ → - - ( 𝑁 / 2 ) = ( 𝑁 / 2 ) ) |
| 28 | 27 | eleq1d | ⊢ ( 𝑁 ∈ ℝ → ( - - ( 𝑁 / 2 ) ∈ ℤ ↔ ( 𝑁 / 2 ) ∈ ℤ ) ) |
| 29 | 25 28 | sylibd | ⊢ ( 𝑁 ∈ ℝ → ( ( - 𝑁 / 2 ) ∈ ℕ → ( 𝑁 / 2 ) ∈ ℤ ) ) |
| 30 | 29 | adantr | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) → ( ( - 𝑁 / 2 ) ∈ ℕ → ( 𝑁 / 2 ) ∈ ℤ ) ) |
| 31 | 30 | con3d | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) → ( ¬ ( 𝑁 / 2 ) ∈ ℤ → ¬ ( - 𝑁 / 2 ) ∈ ℕ ) ) |
| 32 | nneo | ⊢ ( - 𝑁 ∈ ℕ → ( ( - 𝑁 / 2 ) ∈ ℕ ↔ ¬ ( ( - 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) | |
| 33 | 32 | biimprd | ⊢ ( - 𝑁 ∈ ℕ → ( ¬ ( ( - 𝑁 + 1 ) / 2 ) ∈ ℕ → ( - 𝑁 / 2 ) ∈ ℕ ) ) |
| 34 | 33 | con1d | ⊢ ( - 𝑁 ∈ ℕ → ( ¬ ( - 𝑁 / 2 ) ∈ ℕ → ( ( - 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) |
| 35 | nnz | ⊢ ( ( ( - 𝑁 + 1 ) / 2 ) ∈ ℕ → ( ( - 𝑁 + 1 ) / 2 ) ∈ ℤ ) | |
| 36 | peano2zm | ⊢ ( ( ( - 𝑁 + 1 ) / 2 ) ∈ ℤ → ( ( ( - 𝑁 + 1 ) / 2 ) − 1 ) ∈ ℤ ) | |
| 37 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 38 | 37 3 | negsubdi2i | ⊢ - ( 1 − 2 ) = ( 2 − 1 ) |
| 39 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 40 | 38 39 | eqtr2i | ⊢ 1 = - ( 1 − 2 ) |
| 41 | 37 3 | subcli | ⊢ ( 1 − 2 ) ∈ ℂ |
| 42 | 37 41 | negcon2i | ⊢ ( 1 = - ( 1 − 2 ) ↔ ( 1 − 2 ) = - 1 ) |
| 43 | 40 42 | mpbi | ⊢ ( 1 − 2 ) = - 1 |
| 44 | 43 | oveq2i | ⊢ ( - 𝑁 + ( 1 − 2 ) ) = ( - 𝑁 + - 1 ) |
| 45 | negcl | ⊢ ( 𝑁 ∈ ℂ → - 𝑁 ∈ ℂ ) | |
| 46 | addsubass | ⊢ ( ( - 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( - 𝑁 + 1 ) − 2 ) = ( - 𝑁 + ( 1 − 2 ) ) ) | |
| 47 | 37 3 46 | mp3an23 | ⊢ ( - 𝑁 ∈ ℂ → ( ( - 𝑁 + 1 ) − 2 ) = ( - 𝑁 + ( 1 − 2 ) ) ) |
| 48 | 45 47 | syl | ⊢ ( 𝑁 ∈ ℂ → ( ( - 𝑁 + 1 ) − 2 ) = ( - 𝑁 + ( 1 − 2 ) ) ) |
| 49 | negdi | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → - ( 𝑁 + 1 ) = ( - 𝑁 + - 1 ) ) | |
| 50 | 37 49 | mpan2 | ⊢ ( 𝑁 ∈ ℂ → - ( 𝑁 + 1 ) = ( - 𝑁 + - 1 ) ) |
| 51 | 44 48 50 | 3eqtr4a | ⊢ ( 𝑁 ∈ ℂ → ( ( - 𝑁 + 1 ) − 2 ) = - ( 𝑁 + 1 ) ) |
| 52 | 51 | oveq1d | ⊢ ( 𝑁 ∈ ℂ → ( ( ( - 𝑁 + 1 ) − 2 ) / 2 ) = ( - ( 𝑁 + 1 ) / 2 ) ) |
| 53 | 2div2e1 | ⊢ ( 2 / 2 ) = 1 | |
| 54 | 53 | eqcomi | ⊢ 1 = ( 2 / 2 ) |
| 55 | 54 | oveq2i | ⊢ ( ( ( - 𝑁 + 1 ) / 2 ) − 1 ) = ( ( ( - 𝑁 + 1 ) / 2 ) − ( 2 / 2 ) ) |
| 56 | peano2cn | ⊢ ( - 𝑁 ∈ ℂ → ( - 𝑁 + 1 ) ∈ ℂ ) | |
| 57 | 45 56 | syl | ⊢ ( 𝑁 ∈ ℂ → ( - 𝑁 + 1 ) ∈ ℂ ) |
| 58 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 59 | divsubdir | ⊢ ( ( ( - 𝑁 + 1 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( - 𝑁 + 1 ) − 2 ) / 2 ) = ( ( ( - 𝑁 + 1 ) / 2 ) − ( 2 / 2 ) ) ) | |
| 60 | 3 58 59 | mp3an23 | ⊢ ( ( - 𝑁 + 1 ) ∈ ℂ → ( ( ( - 𝑁 + 1 ) − 2 ) / 2 ) = ( ( ( - 𝑁 + 1 ) / 2 ) − ( 2 / 2 ) ) ) |
| 61 | 57 60 | syl | ⊢ ( 𝑁 ∈ ℂ → ( ( ( - 𝑁 + 1 ) − 2 ) / 2 ) = ( ( ( - 𝑁 + 1 ) / 2 ) − ( 2 / 2 ) ) ) |
| 62 | 55 61 | eqtr4id | ⊢ ( 𝑁 ∈ ℂ → ( ( ( - 𝑁 + 1 ) / 2 ) − 1 ) = ( ( ( - 𝑁 + 1 ) − 2 ) / 2 ) ) |
| 63 | peano2cn | ⊢ ( 𝑁 ∈ ℂ → ( 𝑁 + 1 ) ∈ ℂ ) | |
| 64 | divneg | ⊢ ( ( ( 𝑁 + 1 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → - ( ( 𝑁 + 1 ) / 2 ) = ( - ( 𝑁 + 1 ) / 2 ) ) | |
| 65 | 3 4 64 | mp3an23 | ⊢ ( ( 𝑁 + 1 ) ∈ ℂ → - ( ( 𝑁 + 1 ) / 2 ) = ( - ( 𝑁 + 1 ) / 2 ) ) |
| 66 | 63 65 | syl | ⊢ ( 𝑁 ∈ ℂ → - ( ( 𝑁 + 1 ) / 2 ) = ( - ( 𝑁 + 1 ) / 2 ) ) |
| 67 | 52 62 66 | 3eqtr4d | ⊢ ( 𝑁 ∈ ℂ → ( ( ( - 𝑁 + 1 ) / 2 ) − 1 ) = - ( ( 𝑁 + 1 ) / 2 ) ) |
| 68 | 19 67 | syl | ⊢ ( 𝑁 ∈ ℝ → ( ( ( - 𝑁 + 1 ) / 2 ) − 1 ) = - ( ( 𝑁 + 1 ) / 2 ) ) |
| 69 | 68 | eleq1d | ⊢ ( 𝑁 ∈ ℝ → ( ( ( ( - 𝑁 + 1 ) / 2 ) − 1 ) ∈ ℤ ↔ - ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 70 | 36 69 | imbitrid | ⊢ ( 𝑁 ∈ ℝ → ( ( ( - 𝑁 + 1 ) / 2 ) ∈ ℤ → - ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 71 | znegcl | ⊢ ( - ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ → - - ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) | |
| 72 | 70 71 | syl6 | ⊢ ( 𝑁 ∈ ℝ → ( ( ( - 𝑁 + 1 ) / 2 ) ∈ ℤ → - - ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 73 | peano2re | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 + 1 ) ∈ ℝ ) | |
| 74 | 73 | recnd | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 + 1 ) ∈ ℂ ) |
| 75 | 74 | halfcld | ⊢ ( 𝑁 ∈ ℝ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℂ ) |
| 76 | 75 | negnegd | ⊢ ( 𝑁 ∈ ℝ → - - ( ( 𝑁 + 1 ) / 2 ) = ( ( 𝑁 + 1 ) / 2 ) ) |
| 77 | 76 | eleq1d | ⊢ ( 𝑁 ∈ ℝ → ( - - ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ↔ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 78 | 72 77 | sylibd | ⊢ ( 𝑁 ∈ ℝ → ( ( ( - 𝑁 + 1 ) / 2 ) ∈ ℤ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 79 | 35 78 | syl5 | ⊢ ( 𝑁 ∈ ℝ → ( ( ( - 𝑁 + 1 ) / 2 ) ∈ ℕ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 80 | 34 79 | sylan9r | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) → ( ¬ ( - 𝑁 / 2 ) ∈ ℕ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 81 | 31 80 | syld | ⊢ ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) → ( ¬ ( 𝑁 / 2 ) ∈ ℤ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 82 | 10 18 81 | 3jaodan | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) → ( ¬ ( 𝑁 / 2 ) ∈ ℤ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 83 | 1 82 | sylbi | ⊢ ( 𝑁 ∈ ℤ → ( ¬ ( 𝑁 / 2 ) ∈ ℤ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
| 84 | 83 | orrd | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 / 2 ) ∈ ℤ ∨ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |