This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999) (Proof shortened by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | climuni | ⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ) → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | ⊢ 1 ∈ ℤ | |
| 2 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 3 | 1zzd | ⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → 1 ∈ ℤ ) | |
| 4 | climcl | ⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ ℂ ) |
| 6 | climcl | ⊢ ( 𝐹 ⇝ 𝐵 → 𝐵 ∈ ℂ ) | |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ ℂ ) |
| 8 | 5 7 | subcld | ⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 9 | simp3 | ⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) | |
| 10 | 5 7 9 | subne0d | ⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 − 𝐵 ) ≠ 0 ) |
| 11 | 8 10 | absrpcld | ⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ+ ) |
| 12 | 11 | rphalfcld | ⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ∈ ℝ+ ) |
| 13 | eqidd | ⊢ ( ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 14 | simp1 | ⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → 𝐹 ⇝ 𝐴 ) | |
| 15 | 2 3 12 13 14 | climi | ⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ) |
| 16 | simp2 | ⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → 𝐹 ⇝ 𝐵 ) | |
| 17 | 2 3 12 13 16 | climi | ⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ) |
| 18 | 2 | rexanuz2 | ⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ) ↔ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ) ) |
| 19 | 15 17 18 | sylanbrc | ⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ) ) |
| 20 | nnz | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ ) | |
| 21 | uzid | ⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 22 | ne0i | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ) | |
| 23 | r19.2z | ⊢ ( ( ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ) ) | |
| 24 | 23 | ex | ⊢ ( ( ℤ≥ ‘ 𝑗 ) ≠ ∅ → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ) ) ) |
| 25 | 20 21 22 24 | 4syl | ⊢ ( 𝑗 ∈ ℕ → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ) ) ) |
| 26 | simpr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 27 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 28 | 26 27 | abssubd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) = ( abs ‘ ( 𝐴 − ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 29 | 28 | breq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ↔ ( abs ‘ ( 𝐴 − ( 𝐹 ‘ 𝑘 ) ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ) |
| 30 | simplr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 31 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) | |
| 32 | 31 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 33 | 32 | abscld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
| 34 | abs3lem | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) ) → ( ( ( abs ‘ ( 𝐴 − ( 𝐹 ‘ 𝑘 ) ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( abs ‘ ( 𝐴 − 𝐵 ) ) ) ) | |
| 35 | 27 30 26 33 34 | syl22anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( ( ( abs ‘ ( 𝐴 − ( 𝐹 ‘ 𝑘 ) ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( abs ‘ ( 𝐴 − 𝐵 ) ) ) ) |
| 36 | 33 | ltnrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ¬ ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
| 37 | 36 | pm2.21d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( abs ‘ ( 𝐴 − 𝐵 ) ) → ¬ 1 ∈ ℤ ) ) |
| 38 | 35 37 | syld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( ( ( abs ‘ ( 𝐴 − ( 𝐹 ‘ 𝑘 ) ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) → ¬ 1 ∈ ℤ ) ) |
| 39 | 38 | expd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( ( abs ‘ ( 𝐴 − ( 𝐹 ‘ 𝑘 ) ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) → ¬ 1 ∈ ℤ ) ) ) |
| 40 | 29 39 | sylbid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) → ¬ 1 ∈ ℤ ) ) ) |
| 41 | 40 | impr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) → ¬ 1 ∈ ℤ ) ) |
| 42 | 41 | adantld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) → ¬ 1 ∈ ℤ ) ) |
| 43 | 42 | expimpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ) → ¬ 1 ∈ ℤ ) ) |
| 44 | 43 | rexlimdvw | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ) → ¬ 1 ∈ ℤ ) ) |
| 45 | 25 44 | sylan9r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ) → ¬ 1 ∈ ℤ ) ) |
| 46 | 45 | rexlimdva | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ) → ¬ 1 ∈ ℤ ) ) |
| 47 | 5 7 46 | syl2anc | ⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐵 ) ) < ( ( abs ‘ ( 𝐴 − 𝐵 ) ) / 2 ) ) ) → ¬ 1 ∈ ℤ ) ) |
| 48 | 19 47 | mpd | ⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → ¬ 1 ∈ ℤ ) |
| 49 | 48 | 3expia | ⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ) → ( 𝐴 ≠ 𝐵 → ¬ 1 ∈ ℤ ) ) |
| 50 | 49 | necon4ad | ⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ) → ( 1 ∈ ℤ → 𝐴 = 𝐵 ) ) |
| 51 | 1 50 | mpi | ⊢ ( ( 𝐹 ⇝ 𝐴 ∧ 𝐹 ⇝ 𝐵 ) → 𝐴 = 𝐵 ) |