This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffo3 | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo2 | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ran 𝐹 = 𝐵 ) ) | |
| 2 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 3 | fnrnfv | ⊢ ( 𝐹 Fn 𝐴 → ran 𝐹 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } ) | |
| 4 | 3 | eqeq1d | ⊢ ( 𝐹 Fn 𝐴 → ( ran 𝐹 = 𝐵 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } = 𝐵 ) ) |
| 5 | 2 4 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ran 𝐹 = 𝐵 ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } = 𝐵 ) ) |
| 6 | dfbi2 | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ 𝐵 ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 7 | simpr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) | |
| 8 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) | |
| 9 | 8 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 10 | 7 9 | eqeltrd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝑦 ∈ 𝐵 ) |
| 11 | 10 | rexlimdva2 | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) |
| 12 | 11 | biantrurd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 13 | 6 12 | bitr4id | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 14 | 13 | albidv | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 15 | eqabcb | ⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } = 𝐵 ↔ ∀ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ 𝐵 ) ) | |
| 16 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) | |
| 17 | 14 15 16 | 3bitr4g | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) } = 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 18 | 5 17 | bitrd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ran 𝐹 = 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 19 | 18 | pm5.32i | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ran 𝐹 = 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 20 | 1 19 | bitri | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |