This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolun . (Contributed by Mario Carneiro, 7-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolun.a | ⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) | |
| ovolun.b | ⊢ ( 𝜑 → ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) | ||
| ovolun.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| ovolun.s | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| ovolun.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | ||
| ovolun.u | ⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) | ||
| ovolun.f1 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) | ||
| ovolun.f2 | ⊢ ( 𝜑 → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) | ||
| ovolun.f3 | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) | ||
| ovolun.g1 | ⊢ ( 𝜑 → 𝐺 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) | ||
| ovolun.g2 | ⊢ ( 𝜑 → 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) | ||
| ovolun.g3 | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) | ||
| ovolun.h | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) ) | ||
| Assertion | ovolunlem1a | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ 𝑘 ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolun.a | ⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) | |
| 2 | ovolun.b | ⊢ ( 𝜑 → ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) | |
| 3 | ovolun.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 4 | ovolun.s | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 5 | ovolun.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | |
| 6 | ovolun.u | ⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) | |
| 7 | ovolun.f1 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) | |
| 8 | ovolun.f2 | ⊢ ( 𝜑 → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) | |
| 9 | ovolun.f3 | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) | |
| 10 | ovolun.g1 | ⊢ ( 𝜑 → 𝐺 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) | |
| 11 | ovolun.g2 | ⊢ ( 𝜑 → 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) | |
| 12 | ovolun.g3 | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) | |
| 13 | ovolun.h | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) ) | |
| 14 | elovolmlem | ⊢ ( 𝐺 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 15 | 10 14 | sylib | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 17 | 16 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( 𝐺 ‘ ( 𝑛 / 2 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 18 | nneo | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ¬ ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ) ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ¬ ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ) ) |
| 20 | 19 | con2bid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ↔ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ) |
| 21 | 20 | biimpar | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ) |
| 22 | elovolmlem | ⊢ ( 𝐹 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 23 | 7 22 | sylib | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 25 | 24 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ) → ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 26 | 21 25 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) → ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 27 | 17 26 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 28 | 27 13 | fmptd | ⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 29 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝐻 ) = ( ( abs ∘ − ) ∘ 𝐻 ) | |
| 30 | 29 6 | ovolsf | ⊢ ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 31 | 28 30 | syl | ⊢ ( 𝜑 → 𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 32 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 33 | fss | ⊢ ( ( 𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝑈 : ℕ ⟶ ℝ ) | |
| 34 | 31 32 33 | sylancl | ⊢ ( 𝜑 → 𝑈 : ℕ ⟶ ℝ ) |
| 35 | 34 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ 𝑘 ) ∈ ℝ ) |
| 36 | 2nn | ⊢ 2 ∈ ℕ | |
| 37 | peano2nn | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 38 | 37 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 39 | 38 | nnred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 40 | 39 | rehalfcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) / 2 ) ∈ ℝ ) |
| 41 | 40 | flcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ∈ ℤ ) |
| 42 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 43 | 42 | 2timesi | ⊢ ( 2 · 1 ) = ( 1 + 1 ) |
| 44 | nnge1 | ⊢ ( 𝑘 ∈ ℕ → 1 ≤ 𝑘 ) | |
| 45 | 44 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 1 ≤ 𝑘 ) |
| 46 | nnre | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) | |
| 47 | 46 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ ) |
| 48 | 1re | ⊢ 1 ∈ ℝ | |
| 49 | leadd1 | ⊢ ( ( 1 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 1 ≤ 𝑘 ↔ ( 1 + 1 ) ≤ ( 𝑘 + 1 ) ) ) | |
| 50 | 48 48 49 | mp3an13 | ⊢ ( 𝑘 ∈ ℝ → ( 1 ≤ 𝑘 ↔ ( 1 + 1 ) ≤ ( 𝑘 + 1 ) ) ) |
| 51 | 47 50 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 ≤ 𝑘 ↔ ( 1 + 1 ) ≤ ( 𝑘 + 1 ) ) ) |
| 52 | 45 51 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 + 1 ) ≤ ( 𝑘 + 1 ) ) |
| 53 | 43 52 | eqbrtrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2 · 1 ) ≤ ( 𝑘 + 1 ) ) |
| 54 | 2re | ⊢ 2 ∈ ℝ | |
| 55 | 2pos | ⊢ 0 < 2 | |
| 56 | 54 55 | pm3.2i | ⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 57 | lemuldiv2 | ⊢ ( ( 1 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · 1 ) ≤ ( 𝑘 + 1 ) ↔ 1 ≤ ( ( 𝑘 + 1 ) / 2 ) ) ) | |
| 58 | 48 56 57 | mp3an13 | ⊢ ( ( 𝑘 + 1 ) ∈ ℝ → ( ( 2 · 1 ) ≤ ( 𝑘 + 1 ) ↔ 1 ≤ ( ( 𝑘 + 1 ) / 2 ) ) ) |
| 59 | 39 58 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 1 ) ≤ ( 𝑘 + 1 ) ↔ 1 ≤ ( ( 𝑘 + 1 ) / 2 ) ) ) |
| 60 | 53 59 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 1 ≤ ( ( 𝑘 + 1 ) / 2 ) ) |
| 61 | 1z | ⊢ 1 ∈ ℤ | |
| 62 | flge | ⊢ ( ( ( ( 𝑘 + 1 ) / 2 ) ∈ ℝ ∧ 1 ∈ ℤ ) → ( 1 ≤ ( ( 𝑘 + 1 ) / 2 ) ↔ 1 ≤ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) | |
| 63 | 40 61 62 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 ≤ ( ( 𝑘 + 1 ) / 2 ) ↔ 1 ≤ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) |
| 64 | 60 63 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 1 ≤ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) |
| 65 | elnnz1 | ⊢ ( ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ∈ ℕ ↔ ( ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ∈ ℤ ∧ 1 ≤ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) | |
| 66 | 41 64 65 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ∈ ℕ ) |
| 67 | nnmulcl | ⊢ ( ( 2 ∈ ℕ ∧ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ∈ ℕ ) → ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ℕ ) | |
| 68 | 36 66 67 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ℕ ) |
| 69 | 34 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ℕ ) → ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ∈ ℝ ) |
| 70 | 68 69 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ∈ ℝ ) |
| 71 | 1 | simprd | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 72 | 2 | simprd | ⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) ∈ ℝ ) |
| 73 | 71 72 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ∈ ℝ ) |
| 74 | 3 | rpred | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 75 | 73 74 | readdcld | ⊢ ( 𝜑 → ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ∈ ℝ ) |
| 76 | 75 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ∈ ℝ ) |
| 77 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) | |
| 78 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 79 | 77 78 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 80 | nnz | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) | |
| 81 | 80 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℤ ) |
| 82 | flhalf | ⊢ ( 𝑘 ∈ ℤ → 𝑘 ≤ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) | |
| 83 | 81 82 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ≤ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) |
| 84 | nnz | ⊢ ( ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ℕ → ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ℤ ) | |
| 85 | eluz | ⊢ ( ( 𝑘 ∈ ℤ ∧ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ℤ ) → ( ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ( ℤ≥ ‘ 𝑘 ) ↔ 𝑘 ≤ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) | |
| 86 | 80 84 85 | syl2an | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ℕ ) → ( ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ( ℤ≥ ‘ 𝑘 ) ↔ 𝑘 ≤ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) |
| 87 | 77 68 86 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ( ℤ≥ ‘ 𝑘 ) ↔ 𝑘 ≤ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) |
| 88 | 83 87 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ( ℤ≥ ‘ 𝑘 ) ) |
| 89 | elfznn | ⊢ ( 𝑗 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) → 𝑗 ∈ ℕ ) | |
| 90 | 29 | ovolfsf | ⊢ ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ 𝐻 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 91 | 28 90 | syl | ⊢ ( 𝜑 → ( ( abs ∘ − ) ∘ 𝐻 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 92 | 91 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( abs ∘ − ) ∘ 𝐻 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 93 | 92 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ∈ ( 0 [,) +∞ ) ) |
| 94 | elrege0 | ⊢ ( ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ) ) | |
| 95 | 93 94 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ) ) |
| 96 | 95 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ∈ ℝ ) |
| 97 | 89 96 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ∈ ℝ ) |
| 98 | elfzuz | ⊢ ( 𝑗 ∈ ( ( 𝑘 + 1 ) ... ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) → 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) | |
| 99 | eluznn | ⊢ ( ( ( 𝑘 + 1 ) ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) → 𝑗 ∈ ℕ ) | |
| 100 | 38 98 99 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑘 + 1 ) ... ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) → 𝑗 ∈ ℕ ) |
| 101 | 95 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ) |
| 102 | 100 101 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑘 + 1 ) ... ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ) |
| 103 | 79 88 97 102 | sermono | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝑘 ) ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) |
| 104 | 6 | fveq1i | ⊢ ( 𝑈 ‘ 𝑘 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝑘 ) |
| 105 | 6 | fveq1i | ⊢ ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) |
| 106 | 103 104 105 | 3brtr4g | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ 𝑘 ) ≤ ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) |
| 107 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝐹 ) = ( ( abs ∘ − ) ∘ 𝐹 ) | |
| 108 | 107 4 | ovolsf | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 109 | 23 108 | syl | ⊢ ( 𝜑 → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 110 | 109 | frnd | ⊢ ( 𝜑 → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
| 111 | 110 32 | sstrdi | ⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ ) |
| 112 | 111 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ran 𝑆 ⊆ ℝ ) |
| 113 | 109 | ffnd | ⊢ ( 𝜑 → 𝑆 Fn ℕ ) |
| 114 | fnfvelrn | ⊢ ( ( 𝑆 Fn ℕ ∧ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ∈ ℕ ) → ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ran 𝑆 ) | |
| 115 | 113 66 114 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ran 𝑆 ) |
| 116 | 112 115 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ℝ ) |
| 117 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝐺 ) = ( ( abs ∘ − ) ∘ 𝐺 ) | |
| 118 | 117 5 | ovolsf | ⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 119 | 15 118 | syl | ⊢ ( 𝜑 → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 120 | 119 | frnd | ⊢ ( 𝜑 → ran 𝑇 ⊆ ( 0 [,) +∞ ) ) |
| 121 | 120 32 | sstrdi | ⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ ) |
| 122 | 121 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ran 𝑇 ⊆ ℝ ) |
| 123 | 119 | ffnd | ⊢ ( 𝜑 → 𝑇 Fn ℕ ) |
| 124 | fnfvelrn | ⊢ ( ( 𝑇 Fn ℕ ∧ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ∈ ℕ ) → ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ran 𝑇 ) | |
| 125 | 123 66 124 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ran 𝑇 ) |
| 126 | 122 125 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ℝ ) |
| 127 | 74 | rehalfcld | ⊢ ( 𝜑 → ( 𝐶 / 2 ) ∈ ℝ ) |
| 128 | 71 127 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ∈ ℝ ) |
| 129 | 128 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ∈ ℝ ) |
| 130 | 72 127 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ∈ ℝ ) |
| 131 | 130 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ∈ ℝ ) |
| 132 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 133 | 111 132 | sstrdi | ⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ* ) |
| 134 | supxrcl | ⊢ ( ran 𝑆 ⊆ ℝ* → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) | |
| 135 | 133 134 | syl | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 136 | 1nn | ⊢ 1 ∈ ℕ | |
| 137 | 109 | fdmd | ⊢ ( 𝜑 → dom 𝑆 = ℕ ) |
| 138 | 136 137 | eleqtrrid | ⊢ ( 𝜑 → 1 ∈ dom 𝑆 ) |
| 139 | 138 | ne0d | ⊢ ( 𝜑 → dom 𝑆 ≠ ∅ ) |
| 140 | dm0rn0 | ⊢ ( dom 𝑆 = ∅ ↔ ran 𝑆 = ∅ ) | |
| 141 | 140 | necon3bii | ⊢ ( dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅ ) |
| 142 | 139 141 | sylib | ⊢ ( 𝜑 → ran 𝑆 ≠ ∅ ) |
| 143 | supxrgtmnf | ⊢ ( ( ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ) → -∞ < sup ( ran 𝑆 , ℝ* , < ) ) | |
| 144 | 111 142 143 | syl2anc | ⊢ ( 𝜑 → -∞ < sup ( ran 𝑆 , ℝ* , < ) ) |
| 145 | xrre | ⊢ ( ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ∈ ℝ ) ∧ ( -∞ < sup ( ran 𝑆 , ℝ* , < ) ∧ sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) | |
| 146 | 135 128 144 9 145 | syl22anc | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |
| 147 | 146 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |
| 148 | supxrub | ⊢ ( ( ran 𝑆 ⊆ ℝ* ∧ ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ran 𝑆 ) → ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) | |
| 149 | 133 115 148 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 150 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) |
| 151 | 116 147 129 149 150 | letrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) |
| 152 | 121 132 | sstrdi | ⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ* ) |
| 153 | supxrcl | ⊢ ( ran 𝑇 ⊆ ℝ* → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ* ) | |
| 154 | 152 153 | syl | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ* ) |
| 155 | 119 | fdmd | ⊢ ( 𝜑 → dom 𝑇 = ℕ ) |
| 156 | 136 155 | eleqtrrid | ⊢ ( 𝜑 → 1 ∈ dom 𝑇 ) |
| 157 | 156 | ne0d | ⊢ ( 𝜑 → dom 𝑇 ≠ ∅ ) |
| 158 | dm0rn0 | ⊢ ( dom 𝑇 = ∅ ↔ ran 𝑇 = ∅ ) | |
| 159 | 158 | necon3bii | ⊢ ( dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅ ) |
| 160 | 157 159 | sylib | ⊢ ( 𝜑 → ran 𝑇 ≠ ∅ ) |
| 161 | supxrgtmnf | ⊢ ( ( ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ) → -∞ < sup ( ran 𝑇 , ℝ* , < ) ) | |
| 162 | 121 160 161 | syl2anc | ⊢ ( 𝜑 → -∞ < sup ( ran 𝑇 , ℝ* , < ) ) |
| 163 | xrre | ⊢ ( ( ( sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ∈ ℝ ) ∧ ( -∞ < sup ( ran 𝑇 , ℝ* , < ) ∧ sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) | |
| 164 | 154 130 162 12 163 | syl22anc | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
| 165 | 164 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
| 166 | supxrub | ⊢ ( ( ran 𝑇 ⊆ ℝ* ∧ ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ran 𝑇 ) → ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) | |
| 167 | 152 125 166 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 168 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) |
| 169 | 126 165 131 167 168 | letrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) |
| 170 | 116 126 129 131 151 169 | le2addd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) + ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) + ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) |
| 171 | oveq2 | ⊢ ( 𝑧 = 1 → ( 2 · 𝑧 ) = ( 2 · 1 ) ) | |
| 172 | 171 | fveq2d | ⊢ ( 𝑧 = 1 → ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( 𝑈 ‘ ( 2 · 1 ) ) ) |
| 173 | fveq2 | ⊢ ( 𝑧 = 1 → ( 𝑆 ‘ 𝑧 ) = ( 𝑆 ‘ 1 ) ) | |
| 174 | fveq2 | ⊢ ( 𝑧 = 1 → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 1 ) ) | |
| 175 | 173 174 | oveq12d | ⊢ ( 𝑧 = 1 → ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑆 ‘ 1 ) + ( 𝑇 ‘ 1 ) ) ) |
| 176 | 172 175 | eqeq12d | ⊢ ( 𝑧 = 1 → ( ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) ↔ ( 𝑈 ‘ ( 2 · 1 ) ) = ( ( 𝑆 ‘ 1 ) + ( 𝑇 ‘ 1 ) ) ) ) |
| 177 | 176 | imbi2d | ⊢ ( 𝑧 = 1 → ( ( 𝜑 → ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( 𝑈 ‘ ( 2 · 1 ) ) = ( ( 𝑆 ‘ 1 ) + ( 𝑇 ‘ 1 ) ) ) ) ) |
| 178 | oveq2 | ⊢ ( 𝑧 = 𝑘 → ( 2 · 𝑧 ) = ( 2 · 𝑘 ) ) | |
| 179 | 178 | fveq2d | ⊢ ( 𝑧 = 𝑘 → ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( 𝑈 ‘ ( 2 · 𝑘 ) ) ) |
| 180 | fveq2 | ⊢ ( 𝑧 = 𝑘 → ( 𝑆 ‘ 𝑧 ) = ( 𝑆 ‘ 𝑘 ) ) | |
| 181 | fveq2 | ⊢ ( 𝑧 = 𝑘 → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑘 ) ) | |
| 182 | 180 181 | oveq12d | ⊢ ( 𝑧 = 𝑘 → ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) ) |
| 183 | 179 182 | eqeq12d | ⊢ ( 𝑧 = 𝑘 → ( ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) ↔ ( 𝑈 ‘ ( 2 · 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) ) ) |
| 184 | 183 | imbi2d | ⊢ ( 𝑧 = 𝑘 → ( ( 𝜑 → ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( 𝑈 ‘ ( 2 · 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) ) ) ) |
| 185 | oveq2 | ⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( 2 · 𝑧 ) = ( 2 · ( 𝑘 + 1 ) ) ) | |
| 186 | 185 | fveq2d | ⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( 𝑈 ‘ ( 2 · ( 𝑘 + 1 ) ) ) ) |
| 187 | fveq2 | ⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( 𝑆 ‘ 𝑧 ) = ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) | |
| 188 | fveq2 | ⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) | |
| 189 | 187 188 | oveq12d | ⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) + ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) ) |
| 190 | 186 189 | eqeq12d | ⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) ↔ ( 𝑈 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) + ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 191 | 190 | imbi2d | ⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ( 𝜑 → ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( 𝑈 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) + ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 192 | oveq2 | ⊢ ( 𝑧 = ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) → ( 2 · 𝑧 ) = ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) | |
| 193 | 192 | fveq2d | ⊢ ( 𝑧 = ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) → ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) |
| 194 | fveq2 | ⊢ ( 𝑧 = ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) → ( 𝑆 ‘ 𝑧 ) = ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) | |
| 195 | fveq2 | ⊢ ( 𝑧 = ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) | |
| 196 | 194 195 | oveq12d | ⊢ ( 𝑧 = ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) → ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) + ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) |
| 197 | 193 196 | eqeq12d | ⊢ ( 𝑧 = ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) → ( ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) ↔ ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) = ( ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) + ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) ) |
| 198 | 197 | imbi2d | ⊢ ( 𝑧 = ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) → ( ( 𝜑 → ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) = ( ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) + ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) ) ) |
| 199 | 6 | fveq1i | ⊢ ( 𝑈 ‘ ( 2 · 1 ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( 2 · 1 ) ) |
| 200 | 136 | a1i | ⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 201 | 29 | ovolfsval | ⊢ ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 1 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐻 ‘ 1 ) ) − ( 1st ‘ ( 𝐻 ‘ 1 ) ) ) ) |
| 202 | 28 136 201 | sylancl | ⊢ ( 𝜑 → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐻 ‘ 1 ) ) − ( 1st ‘ ( 𝐻 ‘ 1 ) ) ) ) |
| 203 | halfnz | ⊢ ¬ ( 1 / 2 ) ∈ ℤ | |
| 204 | nnz | ⊢ ( ( 𝑛 / 2 ) ∈ ℕ → ( 𝑛 / 2 ) ∈ ℤ ) | |
| 205 | oveq1 | ⊢ ( 𝑛 = 1 → ( 𝑛 / 2 ) = ( 1 / 2 ) ) | |
| 206 | 205 | eleq1d | ⊢ ( 𝑛 = 1 → ( ( 𝑛 / 2 ) ∈ ℤ ↔ ( 1 / 2 ) ∈ ℤ ) ) |
| 207 | 204 206 | imbitrid | ⊢ ( 𝑛 = 1 → ( ( 𝑛 / 2 ) ∈ ℕ → ( 1 / 2 ) ∈ ℤ ) ) |
| 208 | 203 207 | mtoi | ⊢ ( 𝑛 = 1 → ¬ ( 𝑛 / 2 ) ∈ ℕ ) |
| 209 | 208 | iffalsed | ⊢ ( 𝑛 = 1 → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) = ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) |
| 210 | oveq1 | ⊢ ( 𝑛 = 1 → ( 𝑛 + 1 ) = ( 1 + 1 ) ) | |
| 211 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 212 | 210 211 | eqtr4di | ⊢ ( 𝑛 = 1 → ( 𝑛 + 1 ) = 2 ) |
| 213 | 212 | oveq1d | ⊢ ( 𝑛 = 1 → ( ( 𝑛 + 1 ) / 2 ) = ( 2 / 2 ) ) |
| 214 | 2div2e1 | ⊢ ( 2 / 2 ) = 1 | |
| 215 | 213 214 | eqtrdi | ⊢ ( 𝑛 = 1 → ( ( 𝑛 + 1 ) / 2 ) = 1 ) |
| 216 | 215 | fveq2d | ⊢ ( 𝑛 = 1 → ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) = ( 𝐹 ‘ 1 ) ) |
| 217 | 209 216 | eqtrd | ⊢ ( 𝑛 = 1 → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) = ( 𝐹 ‘ 1 ) ) |
| 218 | fvex | ⊢ ( 𝐹 ‘ 1 ) ∈ V | |
| 219 | 217 13 218 | fvmpt | ⊢ ( 1 ∈ ℕ → ( 𝐻 ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
| 220 | 136 219 | ax-mp | ⊢ ( 𝐻 ‘ 1 ) = ( 𝐹 ‘ 1 ) |
| 221 | 220 | fveq2i | ⊢ ( 2nd ‘ ( 𝐻 ‘ 1 ) ) = ( 2nd ‘ ( 𝐹 ‘ 1 ) ) |
| 222 | 220 | fveq2i | ⊢ ( 1st ‘ ( 𝐻 ‘ 1 ) ) = ( 1st ‘ ( 𝐹 ‘ 1 ) ) |
| 223 | 221 222 | oveq12i | ⊢ ( ( 2nd ‘ ( 𝐻 ‘ 1 ) ) − ( 1st ‘ ( 𝐻 ‘ 1 ) ) ) = ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) |
| 224 | 202 223 | eqtrdi | ⊢ ( 𝜑 → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| 225 | 61 224 | seq1i | ⊢ ( 𝜑 → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| 226 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
| 227 | 226 | fveq2i | ⊢ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( 2 · 1 ) ) = ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 2 ) |
| 228 | 29 | ovolfsval | ⊢ ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 2 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 2 ) = ( ( 2nd ‘ ( 𝐻 ‘ 2 ) ) − ( 1st ‘ ( 𝐻 ‘ 2 ) ) ) ) |
| 229 | 28 36 228 | sylancl | ⊢ ( 𝜑 → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 2 ) = ( ( 2nd ‘ ( 𝐻 ‘ 2 ) ) − ( 1st ‘ ( 𝐻 ‘ 2 ) ) ) ) |
| 230 | oveq1 | ⊢ ( 𝑛 = 2 → ( 𝑛 / 2 ) = ( 2 / 2 ) ) | |
| 231 | 230 214 | eqtrdi | ⊢ ( 𝑛 = 2 → ( 𝑛 / 2 ) = 1 ) |
| 232 | 231 136 | eqeltrdi | ⊢ ( 𝑛 = 2 → ( 𝑛 / 2 ) ∈ ℕ ) |
| 233 | 232 | iftrued | ⊢ ( 𝑛 = 2 → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) = ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) |
| 234 | 231 | fveq2d | ⊢ ( 𝑛 = 2 → ( 𝐺 ‘ ( 𝑛 / 2 ) ) = ( 𝐺 ‘ 1 ) ) |
| 235 | 233 234 | eqtrd | ⊢ ( 𝑛 = 2 → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) = ( 𝐺 ‘ 1 ) ) |
| 236 | fvex | ⊢ ( 𝐺 ‘ 1 ) ∈ V | |
| 237 | 235 13 236 | fvmpt | ⊢ ( 2 ∈ ℕ → ( 𝐻 ‘ 2 ) = ( 𝐺 ‘ 1 ) ) |
| 238 | 36 237 | ax-mp | ⊢ ( 𝐻 ‘ 2 ) = ( 𝐺 ‘ 1 ) |
| 239 | 238 | fveq2i | ⊢ ( 2nd ‘ ( 𝐻 ‘ 2 ) ) = ( 2nd ‘ ( 𝐺 ‘ 1 ) ) |
| 240 | 238 | fveq2i | ⊢ ( 1st ‘ ( 𝐻 ‘ 2 ) ) = ( 1st ‘ ( 𝐺 ‘ 1 ) ) |
| 241 | 239 240 | oveq12i | ⊢ ( ( 2nd ‘ ( 𝐻 ‘ 2 ) ) − ( 1st ‘ ( 𝐻 ‘ 2 ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) |
| 242 | 229 241 | eqtrdi | ⊢ ( 𝜑 → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 2 ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) |
| 243 | 227 242 | eqtrid | ⊢ ( 𝜑 → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( 2 · 1 ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) |
| 244 | 78 200 43 225 243 | seqp1d | ⊢ ( 𝜑 → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( 2 · 1 ) ) = ( ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) + ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) ) |
| 245 | 199 244 | eqtrid | ⊢ ( 𝜑 → ( 𝑈 ‘ ( 2 · 1 ) ) = ( ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) + ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) ) |
| 246 | 4 | fveq1i | ⊢ ( 𝑆 ‘ 1 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 1 ) |
| 247 | 107 | ovolfsval | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 1 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| 248 | 23 136 247 | sylancl | ⊢ ( 𝜑 → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| 249 | 61 248 | seq1i | ⊢ ( 𝜑 → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| 250 | 246 249 | eqtrid | ⊢ ( 𝜑 → ( 𝑆 ‘ 1 ) = ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| 251 | 5 | fveq1i | ⊢ ( 𝑇 ‘ 1 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) |
| 252 | 117 | ovolfsval | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 1 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) |
| 253 | 15 136 252 | sylancl | ⊢ ( 𝜑 → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) |
| 254 | 61 253 | seq1i | ⊢ ( 𝜑 → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) |
| 255 | 251 254 | eqtrid | ⊢ ( 𝜑 → ( 𝑇 ‘ 1 ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) |
| 256 | 250 255 | oveq12d | ⊢ ( 𝜑 → ( ( 𝑆 ‘ 1 ) + ( 𝑇 ‘ 1 ) ) = ( ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) + ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) ) |
| 257 | 245 256 | eqtr4d | ⊢ ( 𝜑 → ( 𝑈 ‘ ( 2 · 1 ) ) = ( ( 𝑆 ‘ 1 ) + ( 𝑇 ‘ 1 ) ) ) |
| 258 | oveq1 | ⊢ ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) → ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) = ( ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) + ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) ) | |
| 259 | 43 | oveq2i | ⊢ ( ( 2 · 𝑘 ) + ( 2 · 1 ) ) = ( ( 2 · 𝑘 ) + ( 1 + 1 ) ) |
| 260 | 2cnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 2 ∈ ℂ ) | |
| 261 | 47 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 262 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℂ ) | |
| 263 | 260 261 262 | adddid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2 · ( 𝑘 + 1 ) ) = ( ( 2 · 𝑘 ) + ( 2 · 1 ) ) ) |
| 264 | nnmulcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ℕ ) | |
| 265 | 36 264 | mpan | ⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℕ ) |
| 266 | 265 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ℕ ) |
| 267 | 266 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ℂ ) |
| 268 | 267 262 262 | addassd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) = ( ( 2 · 𝑘 ) + ( 1 + 1 ) ) ) |
| 269 | 259 263 268 | 3eqtr4a | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2 · ( 𝑘 + 1 ) ) = ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) |
| 270 | 269 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( 𝑈 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) |
| 271 | 6 | fveq1i | ⊢ ( 𝑈 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) |
| 272 | 266 | peano2nnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) |
| 273 | 272 78 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 274 | seqp1 | ⊢ ( ( ( 2 · 𝑘 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) ) | |
| 275 | 273 274 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) ) |
| 276 | 266 78 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 277 | seqp1 | ⊢ ( ( 2 · 𝑘 ) ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( 2 · 𝑘 ) ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) | |
| 278 | 276 277 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( 2 · 𝑘 ) ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 279 | 6 | fveq1i | ⊢ ( 𝑈 ‘ ( 2 · 𝑘 ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( 2 · 𝑘 ) ) |
| 280 | 279 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( 2 · 𝑘 ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( 2 · 𝑘 ) ) ) |
| 281 | oveq1 | ⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → ( 𝑛 / 2 ) = ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ) | |
| 282 | 281 | eleq1d | ⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ∈ ℕ ) ) |
| 283 | 281 | fveq2d | ⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → ( 𝐺 ‘ ( 𝑛 / 2 ) ) = ( 𝐺 ‘ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ) ) |
| 284 | oveq1 | ⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → ( 𝑛 + 1 ) = ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) | |
| 285 | 284 | fvoveq1d | ⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) = ( 𝐹 ‘ ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) ) |
| 286 | 282 283 285 | ifbieq12d | ⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) = if ( ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) ) ) |
| 287 | fvex | ⊢ ( 𝐺 ‘ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ) ∈ V | |
| 288 | fvex | ⊢ ( 𝐹 ‘ ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) ∈ V | |
| 289 | 287 288 | ifex | ⊢ if ( ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) ) ∈ V |
| 290 | 286 13 289 | fvmpt | ⊢ ( ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ → ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) = if ( ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) ) ) |
| 291 | 272 290 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) = if ( ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) ) ) |
| 292 | 2ne0 | ⊢ 2 ≠ 0 | |
| 293 | 292 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 2 ≠ 0 ) |
| 294 | 261 260 293 | divcan3d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) / 2 ) = 𝑘 ) |
| 295 | 294 77 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) / 2 ) ∈ ℕ ) |
| 296 | nneo | ⊢ ( ( 2 · 𝑘 ) ∈ ℕ → ( ( ( 2 · 𝑘 ) / 2 ) ∈ ℕ ↔ ¬ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ∈ ℕ ) ) | |
| 297 | 266 296 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 2 · 𝑘 ) / 2 ) ∈ ℕ ↔ ¬ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ∈ ℕ ) ) |
| 298 | 295 297 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ¬ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ∈ ℕ ) |
| 299 | 298 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → if ( ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) ) = ( 𝐹 ‘ ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) ) |
| 300 | 269 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) = ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) |
| 301 | 38 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 302 | 2cn | ⊢ 2 ∈ ℂ | |
| 303 | divcan3 | ⊢ ( ( ( 𝑘 + 1 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) = ( 𝑘 + 1 ) ) | |
| 304 | 302 292 303 | mp3an23 | ⊢ ( ( 𝑘 + 1 ) ∈ ℂ → ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) = ( 𝑘 + 1 ) ) |
| 305 | 301 304 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) = ( 𝑘 + 1 ) ) |
| 306 | 300 305 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) = ( 𝑘 + 1 ) ) |
| 307 | 306 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 308 | 291 299 307 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 309 | 308 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2nd ‘ ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 310 | 308 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( 1st ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 311 | 309 310 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) − ( 1st ‘ ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) = ( ( 2nd ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 312 | 29 | ovolfsval | ⊢ ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 2nd ‘ ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) − ( 1st ‘ ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
| 313 | 28 272 312 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 2nd ‘ ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) − ( 1st ‘ ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
| 314 | 107 | ovolfsval | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) = ( ( 2nd ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 315 | 23 37 314 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) = ( ( 2nd ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 316 | 311 313 315 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 317 | 280 316 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( 2 · 𝑘 ) ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 318 | 278 317 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 319 | 269 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) |
| 320 | 272 | peano2nnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ∈ ℕ ) |
| 321 | 269 320 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2 · ( 𝑘 + 1 ) ) ∈ ℕ ) |
| 322 | oveq1 | ⊢ ( 𝑛 = ( 2 · ( 𝑘 + 1 ) ) → ( 𝑛 / 2 ) = ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) | |
| 323 | 322 | eleq1d | ⊢ ( 𝑛 = ( 2 · ( 𝑘 + 1 ) ) → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ∈ ℕ ) ) |
| 324 | 322 | fveq2d | ⊢ ( 𝑛 = ( 2 · ( 𝑘 + 1 ) ) → ( 𝐺 ‘ ( 𝑛 / 2 ) ) = ( 𝐺 ‘ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) ) |
| 325 | oveq1 | ⊢ ( 𝑛 = ( 2 · ( 𝑘 + 1 ) ) → ( 𝑛 + 1 ) = ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) | |
| 326 | 325 | fvoveq1d | ⊢ ( 𝑛 = ( 2 · ( 𝑘 + 1 ) ) → ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) = ( 𝐹 ‘ ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) / 2 ) ) ) |
| 327 | 323 324 326 | ifbieq12d | ⊢ ( 𝑛 = ( 2 · ( 𝑘 + 1 ) ) → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) = if ( ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) / 2 ) ) ) ) |
| 328 | fvex | ⊢ ( 𝐺 ‘ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) ∈ V | |
| 329 | fvex | ⊢ ( 𝐹 ‘ ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) / 2 ) ) ∈ V | |
| 330 | 328 329 | ifex | ⊢ if ( ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) / 2 ) ) ) ∈ V |
| 331 | 327 13 330 | fvmpt | ⊢ ( ( 2 · ( 𝑘 + 1 ) ) ∈ ℕ → ( 𝐻 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = if ( ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) / 2 ) ) ) ) |
| 332 | 321 331 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = if ( ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) / 2 ) ) ) ) |
| 333 | 305 38 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ∈ ℕ ) |
| 334 | 333 | iftrued | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → if ( ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) / 2 ) ) ) = ( 𝐺 ‘ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) ) |
| 335 | 305 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) = ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
| 336 | 332 334 335 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
| 337 | 319 336 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
| 338 | 337 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2nd ‘ ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) = ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) |
| 339 | 337 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) = ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) |
| 340 | 338 339 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) − ( 1st ‘ ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 341 | 29 | ovolfsval | ⊢ ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( ( 2nd ‘ ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) − ( 1st ‘ ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) ) ) |
| 342 | 28 320 341 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( ( 2nd ‘ ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) − ( 1st ‘ ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) ) ) |
| 343 | 117 | ovolfsval | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) = ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 344 | 15 37 343 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) = ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 345 | 340 342 344 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) |
| 346 | 318 345 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) = ( ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 347 | 275 346 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 348 | 271 347 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 349 | ffvelcdm | ⊢ ( ( 𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 2 · 𝑘 ) ∈ ℕ ) → ( 𝑈 ‘ ( 2 · 𝑘 ) ) ∈ ( 0 [,) +∞ ) ) | |
| 350 | 31 265 349 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( 2 · 𝑘 ) ) ∈ ( 0 [,) +∞ ) ) |
| 351 | 32 350 | sselid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( 2 · 𝑘 ) ) ∈ ℝ ) |
| 352 | 351 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( 2 · 𝑘 ) ) ∈ ℂ ) |
| 353 | 107 | ovolfsf | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ 𝐹 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 354 | 23 353 | syl | ⊢ ( 𝜑 → ( ( abs ∘ − ) ∘ 𝐹 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 355 | ffvelcdm | ⊢ ( ( ( ( abs ∘ − ) ∘ 𝐹 ) : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 0 [,) +∞ ) ) | |
| 356 | 354 37 355 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 0 [,) +∞ ) ) |
| 357 | 32 356 | sselid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 358 | 357 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 359 | 117 | ovolfsf | ⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ 𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 360 | 15 359 | syl | ⊢ ( 𝜑 → ( ( abs ∘ − ) ∘ 𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 361 | ffvelcdm | ⊢ ( ( ( ( abs ∘ − ) ∘ 𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 0 [,) +∞ ) ) | |
| 362 | 360 37 361 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 0 [,) +∞ ) ) |
| 363 | 32 362 | sselid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 364 | 363 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 365 | 352 358 364 | addassd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 366 | 270 348 365 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 367 | seqp1 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) ) | |
| 368 | 79 367 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 369 | 4 | fveq1i | ⊢ ( 𝑆 ‘ ( 𝑘 + 1 ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ ( 𝑘 + 1 ) ) |
| 370 | 4 | fveq1i | ⊢ ( 𝑆 ‘ 𝑘 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑘 ) |
| 371 | 370 | oveq1i | ⊢ ( ( 𝑆 ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) |
| 372 | 368 369 371 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 373 | seqp1 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) | |
| 374 | 79 373 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 375 | 5 | fveq1i | ⊢ ( 𝑇 ‘ ( 𝑘 + 1 ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ ( 𝑘 + 1 ) ) |
| 376 | 5 | fveq1i | ⊢ ( 𝑇 ‘ 𝑘 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑘 ) |
| 377 | 376 | oveq1i | ⊢ ( ( 𝑇 ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) |
| 378 | 374 375 377 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑇 ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 379 | 372 378 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) + ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) = ( ( ( 𝑆 ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) + ( ( 𝑇 ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 380 | 109 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ∈ ( 0 [,) +∞ ) ) |
| 381 | 32 380 | sselid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ∈ ℝ ) |
| 382 | 381 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ∈ ℂ ) |
| 383 | 119 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ 𝑘 ) ∈ ( 0 [,) +∞ ) ) |
| 384 | 32 383 | sselid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ 𝑘 ) ∈ ℝ ) |
| 385 | 384 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ 𝑘 ) ∈ ℂ ) |
| 386 | 382 358 385 364 | add4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑆 ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) + ( ( 𝑇 ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) = ( ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) + ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 387 | 379 386 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) + ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) = ( ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) + ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 388 | 366 387 | eqeq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑈 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) + ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) = ( ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) + ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 389 | 258 388 | imbitrrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) → ( 𝑈 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) + ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 390 | 389 | expcom | ⊢ ( 𝑘 ∈ ℕ → ( 𝜑 → ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) → ( 𝑈 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) + ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 391 | 390 | a2d | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝜑 → ( 𝑈 ‘ ( 2 · 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) ) → ( 𝜑 → ( 𝑈 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) + ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
| 392 | 177 184 191 198 257 391 | nnind | ⊢ ( ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ∈ ℕ → ( 𝜑 → ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) = ( ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) + ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) ) |
| 393 | 392 | impcom | ⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ∈ ℕ ) → ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) = ( ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) + ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) |
| 394 | 66 393 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) = ( ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) + ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) |
| 395 | 71 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 396 | 395 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℂ ) |
| 397 | 74 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐶 ∈ ℝ ) |
| 398 | 397 | rehalfcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐶 / 2 ) ∈ ℝ ) |
| 399 | 398 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐶 / 2 ) ∈ ℂ ) |
| 400 | 72 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ 𝐵 ) ∈ ℝ ) |
| 401 | 400 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ 𝐵 ) ∈ ℂ ) |
| 402 | 396 399 401 399 | add4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) + ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) = ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + ( ( 𝐶 / 2 ) + ( 𝐶 / 2 ) ) ) ) |
| 403 | 397 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐶 ∈ ℂ ) |
| 404 | 403 | 2halvesd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 / 2 ) + ( 𝐶 / 2 ) ) = 𝐶 ) |
| 405 | 404 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + ( ( 𝐶 / 2 ) + ( 𝐶 / 2 ) ) ) = ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |
| 406 | 402 405 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) = ( ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) + ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) |
| 407 | 170 394 406 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |
| 408 | 35 70 76 106 407 | letrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ 𝑘 ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |