This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cancellation law for division. (Contributed by NM, 3-Feb-2004) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divcan3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐵 · 𝐴 ) / 𝐵 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝐵 · 𝐴 ) = ( 𝐵 · 𝐴 ) | |
| 2 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) | |
| 3 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐴 ∈ ℂ ) | |
| 4 | 2 3 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 · 𝐴 ) ∈ ℂ ) |
| 5 | 3simpc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) | |
| 6 | divmul | ⊢ ( ( ( 𝐵 · 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝐵 · 𝐴 ) / 𝐵 ) = 𝐴 ↔ ( 𝐵 · 𝐴 ) = ( 𝐵 · 𝐴 ) ) ) | |
| 7 | 4 3 5 6 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( ( 𝐵 · 𝐴 ) / 𝐵 ) = 𝐴 ↔ ( 𝐵 · 𝐴 ) = ( 𝐵 · 𝐴 ) ) ) |
| 8 | 1 7 | mpbiri | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐵 · 𝐴 ) / 𝐵 ) = 𝐴 ) |