This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the sequence builder function at a successor, deduction form. (Contributed by Mario Carneiro, 30-Apr-2014) (Revised by AV, 3-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqp1d.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| seqp1d.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| seqp1d.3 | ⊢ 𝐾 = ( 𝑁 + 1 ) | ||
| seqp1d.4 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = 𝐴 ) | ||
| seqp1d.5 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐾 ) = 𝐵 ) | ||
| Assertion | seqp1d | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( 𝐴 + 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqp1d.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | seqp1d.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 3 | seqp1d.3 | ⊢ 𝐾 = ( 𝑁 + 1 ) | |
| 4 | seqp1d.4 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = 𝐴 ) | |
| 5 | seqp1d.5 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐾 ) = 𝐵 ) | |
| 6 | 3 | fveq2i | ⊢ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) |
| 8 | 2 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 9 | seqp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
| 11 | 3 | fveq2i | ⊢ ( 𝐹 ‘ 𝐾 ) = ( 𝐹 ‘ ( 𝑁 + 1 ) ) |
| 12 | 11 5 | eqtr3id | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑁 + 1 ) ) = 𝐵 ) |
| 13 | 4 12 | oveq12d | ⊢ ( 𝜑 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) = ( 𝐴 + 𝐵 ) ) |
| 14 | 7 10 13 | 3eqtrd | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( 𝐴 + 𝐵 ) ) |