This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006) (Proof shortened by Mario Carneiro, 18-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nneo | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) ∈ ℕ ↔ ¬ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2nn | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) | |
| 2 | 1 | nncnd | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℂ ) |
| 3 | 2cn | ⊢ 2 ∈ ℂ | |
| 4 | 3 | a1i | ⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) |
| 5 | 2ne0 | ⊢ 2 ≠ 0 | |
| 6 | 5 | a1i | ⊢ ( 𝑁 ∈ ℕ → 2 ≠ 0 ) |
| 7 | 2 4 6 | divcan2d | ⊢ ( 𝑁 ∈ ℕ → ( 2 · ( ( 𝑁 + 1 ) / 2 ) ) = ( 𝑁 + 1 ) ) |
| 8 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 9 | 8 4 6 | divcan2d | ⊢ ( 𝑁 ∈ ℕ → ( 2 · ( 𝑁 / 2 ) ) = 𝑁 ) |
| 10 | 9 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 · ( 𝑁 / 2 ) ) + 1 ) = ( 𝑁 + 1 ) ) |
| 11 | 7 10 | eqtr4d | ⊢ ( 𝑁 ∈ ℕ → ( 2 · ( ( 𝑁 + 1 ) / 2 ) ) = ( ( 2 · ( 𝑁 / 2 ) ) + 1 ) ) |
| 12 | nnz | ⊢ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) | |
| 13 | nnz | ⊢ ( ( 𝑁 / 2 ) ∈ ℕ → ( 𝑁 / 2 ) ∈ ℤ ) | |
| 14 | zneo | ⊢ ( ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ ( 𝑁 / 2 ) ∈ ℤ ) → ( 2 · ( ( 𝑁 + 1 ) / 2 ) ) ≠ ( ( 2 · ( 𝑁 / 2 ) ) + 1 ) ) | |
| 15 | 12 13 14 | syl2an | ⊢ ( ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ∧ ( 𝑁 / 2 ) ∈ ℕ ) → ( 2 · ( ( 𝑁 + 1 ) / 2 ) ) ≠ ( ( 2 · ( 𝑁 / 2 ) ) + 1 ) ) |
| 16 | 15 | expcom | ⊢ ( ( 𝑁 / 2 ) ∈ ℕ → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ → ( 2 · ( ( 𝑁 + 1 ) / 2 ) ) ≠ ( ( 2 · ( 𝑁 / 2 ) ) + 1 ) ) ) |
| 17 | 16 | necon2bd | ⊢ ( ( 𝑁 / 2 ) ∈ ℕ → ( ( 2 · ( ( 𝑁 + 1 ) / 2 ) ) = ( ( 2 · ( 𝑁 / 2 ) ) + 1 ) → ¬ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) |
| 18 | 11 17 | syl5com | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) ∈ ℕ → ¬ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) |
| 19 | oveq1 | ⊢ ( 𝑗 = 1 → ( 𝑗 + 1 ) = ( 1 + 1 ) ) | |
| 20 | 19 | oveq1d | ⊢ ( 𝑗 = 1 → ( ( 𝑗 + 1 ) / 2 ) = ( ( 1 + 1 ) / 2 ) ) |
| 21 | 20 | eleq1d | ⊢ ( 𝑗 = 1 → ( ( ( 𝑗 + 1 ) / 2 ) ∈ ℕ ↔ ( ( 1 + 1 ) / 2 ) ∈ ℕ ) ) |
| 22 | oveq1 | ⊢ ( 𝑗 = 1 → ( 𝑗 / 2 ) = ( 1 / 2 ) ) | |
| 23 | 22 | eleq1d | ⊢ ( 𝑗 = 1 → ( ( 𝑗 / 2 ) ∈ ℕ ↔ ( 1 / 2 ) ∈ ℕ ) ) |
| 24 | 21 23 | orbi12d | ⊢ ( 𝑗 = 1 → ( ( ( ( 𝑗 + 1 ) / 2 ) ∈ ℕ ∨ ( 𝑗 / 2 ) ∈ ℕ ) ↔ ( ( ( 1 + 1 ) / 2 ) ∈ ℕ ∨ ( 1 / 2 ) ∈ ℕ ) ) ) |
| 25 | oveq1 | ⊢ ( 𝑗 = 𝑘 → ( 𝑗 + 1 ) = ( 𝑘 + 1 ) ) | |
| 26 | 25 | oveq1d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝑗 + 1 ) / 2 ) = ( ( 𝑘 + 1 ) / 2 ) ) |
| 27 | 26 | eleq1d | ⊢ ( 𝑗 = 𝑘 → ( ( ( 𝑗 + 1 ) / 2 ) ∈ ℕ ↔ ( ( 𝑘 + 1 ) / 2 ) ∈ ℕ ) ) |
| 28 | oveq1 | ⊢ ( 𝑗 = 𝑘 → ( 𝑗 / 2 ) = ( 𝑘 / 2 ) ) | |
| 29 | 28 | eleq1d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝑗 / 2 ) ∈ ℕ ↔ ( 𝑘 / 2 ) ∈ ℕ ) ) |
| 30 | 27 29 | orbi12d | ⊢ ( 𝑗 = 𝑘 → ( ( ( ( 𝑗 + 1 ) / 2 ) ∈ ℕ ∨ ( 𝑗 / 2 ) ∈ ℕ ) ↔ ( ( ( 𝑘 + 1 ) / 2 ) ∈ ℕ ∨ ( 𝑘 / 2 ) ∈ ℕ ) ) ) |
| 31 | oveq1 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑗 + 1 ) = ( ( 𝑘 + 1 ) + 1 ) ) | |
| 32 | 31 | oveq1d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑗 + 1 ) / 2 ) = ( ( ( 𝑘 + 1 ) + 1 ) / 2 ) ) |
| 33 | 32 | eleq1d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝑗 + 1 ) / 2 ) ∈ ℕ ↔ ( ( ( 𝑘 + 1 ) + 1 ) / 2 ) ∈ ℕ ) ) |
| 34 | oveq1 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑗 / 2 ) = ( ( 𝑘 + 1 ) / 2 ) ) | |
| 35 | 34 | eleq1d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑗 / 2 ) ∈ ℕ ↔ ( ( 𝑘 + 1 ) / 2 ) ∈ ℕ ) ) |
| 36 | 33 35 | orbi12d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( ( 𝑗 + 1 ) / 2 ) ∈ ℕ ∨ ( 𝑗 / 2 ) ∈ ℕ ) ↔ ( ( ( ( 𝑘 + 1 ) + 1 ) / 2 ) ∈ ℕ ∨ ( ( 𝑘 + 1 ) / 2 ) ∈ ℕ ) ) ) |
| 37 | oveq1 | ⊢ ( 𝑗 = 𝑁 → ( 𝑗 + 1 ) = ( 𝑁 + 1 ) ) | |
| 38 | 37 | oveq1d | ⊢ ( 𝑗 = 𝑁 → ( ( 𝑗 + 1 ) / 2 ) = ( ( 𝑁 + 1 ) / 2 ) ) |
| 39 | 38 | eleq1d | ⊢ ( 𝑗 = 𝑁 → ( ( ( 𝑗 + 1 ) / 2 ) ∈ ℕ ↔ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) |
| 40 | oveq1 | ⊢ ( 𝑗 = 𝑁 → ( 𝑗 / 2 ) = ( 𝑁 / 2 ) ) | |
| 41 | 40 | eleq1d | ⊢ ( 𝑗 = 𝑁 → ( ( 𝑗 / 2 ) ∈ ℕ ↔ ( 𝑁 / 2 ) ∈ ℕ ) ) |
| 42 | 39 41 | orbi12d | ⊢ ( 𝑗 = 𝑁 → ( ( ( ( 𝑗 + 1 ) / 2 ) ∈ ℕ ∨ ( 𝑗 / 2 ) ∈ ℕ ) ↔ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ∨ ( 𝑁 / 2 ) ∈ ℕ ) ) ) |
| 43 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 44 | 43 | oveq1i | ⊢ ( 2 / 2 ) = ( ( 1 + 1 ) / 2 ) |
| 45 | 2div2e1 | ⊢ ( 2 / 2 ) = 1 | |
| 46 | 44 45 | eqtr3i | ⊢ ( ( 1 + 1 ) / 2 ) = 1 |
| 47 | 1nn | ⊢ 1 ∈ ℕ | |
| 48 | 46 47 | eqeltri | ⊢ ( ( 1 + 1 ) / 2 ) ∈ ℕ |
| 49 | 48 | orci | ⊢ ( ( ( 1 + 1 ) / 2 ) ∈ ℕ ∨ ( 1 / 2 ) ∈ ℕ ) |
| 50 | peano2nn | ⊢ ( ( 𝑘 / 2 ) ∈ ℕ → ( ( 𝑘 / 2 ) + 1 ) ∈ ℕ ) | |
| 51 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
| 52 | add1p1 | ⊢ ( 𝑘 ∈ ℂ → ( ( 𝑘 + 1 ) + 1 ) = ( 𝑘 + 2 ) ) | |
| 53 | 52 | oveq1d | ⊢ ( 𝑘 ∈ ℂ → ( ( ( 𝑘 + 1 ) + 1 ) / 2 ) = ( ( 𝑘 + 2 ) / 2 ) ) |
| 54 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 55 | divdir | ⊢ ( ( 𝑘 ∈ ℂ ∧ 2 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 𝑘 + 2 ) / 2 ) = ( ( 𝑘 / 2 ) + ( 2 / 2 ) ) ) | |
| 56 | 3 54 55 | mp3an23 | ⊢ ( 𝑘 ∈ ℂ → ( ( 𝑘 + 2 ) / 2 ) = ( ( 𝑘 / 2 ) + ( 2 / 2 ) ) ) |
| 57 | 45 | oveq2i | ⊢ ( ( 𝑘 / 2 ) + ( 2 / 2 ) ) = ( ( 𝑘 / 2 ) + 1 ) |
| 58 | 56 57 | eqtrdi | ⊢ ( 𝑘 ∈ ℂ → ( ( 𝑘 + 2 ) / 2 ) = ( ( 𝑘 / 2 ) + 1 ) ) |
| 59 | 53 58 | eqtrd | ⊢ ( 𝑘 ∈ ℂ → ( ( ( 𝑘 + 1 ) + 1 ) / 2 ) = ( ( 𝑘 / 2 ) + 1 ) ) |
| 60 | 51 59 | syl | ⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑘 + 1 ) + 1 ) / 2 ) = ( ( 𝑘 / 2 ) + 1 ) ) |
| 61 | 60 | eleq1d | ⊢ ( 𝑘 ∈ ℕ → ( ( ( ( 𝑘 + 1 ) + 1 ) / 2 ) ∈ ℕ ↔ ( ( 𝑘 / 2 ) + 1 ) ∈ ℕ ) ) |
| 62 | 50 61 | imbitrrid | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 / 2 ) ∈ ℕ → ( ( ( 𝑘 + 1 ) + 1 ) / 2 ) ∈ ℕ ) ) |
| 63 | 62 | orim2d | ⊢ ( 𝑘 ∈ ℕ → ( ( ( ( 𝑘 + 1 ) / 2 ) ∈ ℕ ∨ ( 𝑘 / 2 ) ∈ ℕ ) → ( ( ( 𝑘 + 1 ) / 2 ) ∈ ℕ ∨ ( ( ( 𝑘 + 1 ) + 1 ) / 2 ) ∈ ℕ ) ) ) |
| 64 | orcom | ⊢ ( ( ( ( 𝑘 + 1 ) / 2 ) ∈ ℕ ∨ ( ( ( 𝑘 + 1 ) + 1 ) / 2 ) ∈ ℕ ) ↔ ( ( ( ( 𝑘 + 1 ) + 1 ) / 2 ) ∈ ℕ ∨ ( ( 𝑘 + 1 ) / 2 ) ∈ ℕ ) ) | |
| 65 | 63 64 | imbitrdi | ⊢ ( 𝑘 ∈ ℕ → ( ( ( ( 𝑘 + 1 ) / 2 ) ∈ ℕ ∨ ( 𝑘 / 2 ) ∈ ℕ ) → ( ( ( ( 𝑘 + 1 ) + 1 ) / 2 ) ∈ ℕ ∨ ( ( 𝑘 + 1 ) / 2 ) ∈ ℕ ) ) ) |
| 66 | 24 30 36 42 49 65 | nnind | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ∨ ( 𝑁 / 2 ) ∈ ℕ ) ) |
| 67 | 66 | ord | ⊢ ( 𝑁 ∈ ℕ → ( ¬ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ → ( 𝑁 / 2 ) ∈ ℕ ) ) |
| 68 | 18 67 | impbid | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / 2 ) ∈ ℕ ↔ ¬ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) |