This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolun . (Contributed by Mario Carneiro, 12-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolun.a | ⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) | |
| ovolun.b | ⊢ ( 𝜑 → ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) | ||
| ovolun.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| ovolun.s | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| ovolun.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | ||
| ovolun.u | ⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) | ||
| ovolun.f1 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) | ||
| ovolun.f2 | ⊢ ( 𝜑 → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) | ||
| ovolun.f3 | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) | ||
| ovolun.g1 | ⊢ ( 𝜑 → 𝐺 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) | ||
| ovolun.g2 | ⊢ ( 𝜑 → 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) | ||
| ovolun.g3 | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) | ||
| ovolun.h | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) ) | ||
| Assertion | ovolunlem1 | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolun.a | ⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) | |
| 2 | ovolun.b | ⊢ ( 𝜑 → ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) | |
| 3 | ovolun.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 4 | ovolun.s | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 5 | ovolun.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | |
| 6 | ovolun.u | ⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) | |
| 7 | ovolun.f1 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) | |
| 8 | ovolun.f2 | ⊢ ( 𝜑 → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) | |
| 9 | ovolun.f3 | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) | |
| 10 | ovolun.g1 | ⊢ ( 𝜑 → 𝐺 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) | |
| 11 | ovolun.g2 | ⊢ ( 𝜑 → 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) | |
| 12 | ovolun.g3 | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) | |
| 13 | ovolun.h | ⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) ) | |
| 14 | 1 | simpld | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 15 | 2 | simpld | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
| 16 | 14 15 | unssd | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ⊆ ℝ ) |
| 17 | elovolmlem | ⊢ ( 𝐺 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 18 | 10 17 | sylib | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 20 | 19 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( 𝐺 ‘ ( 𝑛 / 2 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 21 | nneo | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ¬ ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ) ) | |
| 22 | 21 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ¬ ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ) ) |
| 23 | 22 | con2bid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ↔ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ) |
| 24 | 23 | biimpar | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ) |
| 25 | elovolmlem | ⊢ ( 𝐹 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 26 | 7 25 | sylib | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 28 | 27 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ) → ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 29 | 24 28 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) → ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 30 | 20 29 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 31 | 30 13 | fmptd | ⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 32 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝐻 ) = ( ( abs ∘ − ) ∘ 𝐻 ) | |
| 33 | 32 6 | ovolsf | ⊢ ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 34 | 31 33 | syl | ⊢ ( 𝜑 → 𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 35 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 36 | fss | ⊢ ( ( 𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝑈 : ℕ ⟶ ℝ ) | |
| 37 | 34 35 36 | sylancl | ⊢ ( 𝜑 → 𝑈 : ℕ ⟶ ℝ ) |
| 38 | 37 | frnd | ⊢ ( 𝜑 → ran 𝑈 ⊆ ℝ ) |
| 39 | 1nn | ⊢ 1 ∈ ℕ | |
| 40 | 1z | ⊢ 1 ∈ ℤ | |
| 41 | seqfn | ⊢ ( 1 ∈ ℤ → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) Fn ( ℤ≥ ‘ 1 ) ) | |
| 42 | 40 41 | mp1i | ⊢ ( 𝜑 → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) Fn ( ℤ≥ ‘ 1 ) ) |
| 43 | 6 | fneq1i | ⊢ ( 𝑈 Fn ℕ ↔ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) Fn ℕ ) |
| 44 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 45 | 44 | fneq2i | ⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) Fn ℕ ↔ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) Fn ( ℤ≥ ‘ 1 ) ) |
| 46 | 43 45 | bitri | ⊢ ( 𝑈 Fn ℕ ↔ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) Fn ( ℤ≥ ‘ 1 ) ) |
| 47 | 42 46 | sylibr | ⊢ ( 𝜑 → 𝑈 Fn ℕ ) |
| 48 | 47 | fndmd | ⊢ ( 𝜑 → dom 𝑈 = ℕ ) |
| 49 | 39 48 | eleqtrrid | ⊢ ( 𝜑 → 1 ∈ dom 𝑈 ) |
| 50 | 49 | ne0d | ⊢ ( 𝜑 → dom 𝑈 ≠ ∅ ) |
| 51 | dm0rn0 | ⊢ ( dom 𝑈 = ∅ ↔ ran 𝑈 = ∅ ) | |
| 52 | 51 | necon3bii | ⊢ ( dom 𝑈 ≠ ∅ ↔ ran 𝑈 ≠ ∅ ) |
| 53 | 50 52 | sylib | ⊢ ( 𝜑 → ran 𝑈 ≠ ∅ ) |
| 54 | 1 | simprd | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 55 | 2 | simprd | ⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) ∈ ℝ ) |
| 56 | 54 55 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ∈ ℝ ) |
| 57 | 3 | rpred | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 58 | 56 57 | readdcld | ⊢ ( 𝜑 → ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ∈ ℝ ) |
| 59 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | ovolunlem1a | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ 𝑘 ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |
| 60 | 59 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑈 ‘ 𝑘 ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |
| 61 | breq1 | ⊢ ( 𝑧 = ( 𝑈 ‘ 𝑘 ) → ( 𝑧 ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ↔ ( 𝑈 ‘ 𝑘 ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) ) | |
| 62 | 61 | ralrn | ⊢ ( 𝑈 Fn ℕ → ( ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑈 ‘ 𝑘 ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) ) |
| 63 | 47 62 | syl | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑈 ‘ 𝑘 ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) ) |
| 64 | 60 63 | mpbird | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |
| 65 | brralrspcev | ⊢ ( ( ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ∈ ℝ ∧ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑘 ) | |
| 66 | 58 64 65 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑘 ) |
| 67 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 68 | 38 67 | sstrdi | ⊢ ( 𝜑 → ran 𝑈 ⊆ ℝ* ) |
| 69 | supxrbnd2 | ⊢ ( ran 𝑈 ⊆ ℝ* → ( ∃ 𝑘 ∈ ℝ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑘 ↔ sup ( ran 𝑈 , ℝ* , < ) < +∞ ) ) | |
| 70 | 68 69 | syl | ⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℝ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑘 ↔ sup ( ran 𝑈 , ℝ* , < ) < +∞ ) ) |
| 71 | 66 70 | mpbid | ⊢ ( 𝜑 → sup ( ran 𝑈 , ℝ* , < ) < +∞ ) |
| 72 | supxrbnd | ⊢ ( ( ran 𝑈 ⊆ ℝ ∧ ran 𝑈 ≠ ∅ ∧ sup ( ran 𝑈 , ℝ* , < ) < +∞ ) → sup ( ran 𝑈 , ℝ* , < ) ∈ ℝ ) | |
| 73 | 38 53 71 72 | syl3anc | ⊢ ( 𝜑 → sup ( ran 𝑈 , ℝ* , < ) ∈ ℝ ) |
| 74 | nncn | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) | |
| 75 | 74 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
| 76 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 1 ∈ ℂ ) | |
| 77 | 75 | 2timesd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 2 · 𝑚 ) = ( 𝑚 + 𝑚 ) ) |
| 78 | 77 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 2 · 𝑚 ) − 1 ) = ( ( 𝑚 + 𝑚 ) − 1 ) ) |
| 79 | 75 75 76 78 | assraddsubd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 2 · 𝑚 ) − 1 ) = ( 𝑚 + ( 𝑚 − 1 ) ) ) |
| 80 | simpr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ ) | |
| 81 | nnm1nn0 | ⊢ ( 𝑚 ∈ ℕ → ( 𝑚 − 1 ) ∈ ℕ0 ) | |
| 82 | nnnn0addcl | ⊢ ( ( 𝑚 ∈ ℕ ∧ ( 𝑚 − 1 ) ∈ ℕ0 ) → ( 𝑚 + ( 𝑚 − 1 ) ) ∈ ℕ ) | |
| 83 | 80 81 82 | syl2anc2 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + ( 𝑚 − 1 ) ) ∈ ℕ ) |
| 84 | 79 83 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 2 · 𝑚 ) − 1 ) ∈ ℕ ) |
| 85 | oveq1 | ⊢ ( 𝑛 = ( ( 2 · 𝑚 ) − 1 ) → ( 𝑛 / 2 ) = ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ) | |
| 86 | 85 | eleq1d | ⊢ ( 𝑛 = ( ( 2 · 𝑚 ) − 1 ) → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ ) ) |
| 87 | 85 | fveq2d | ⊢ ( 𝑛 = ( ( 2 · 𝑚 ) − 1 ) → ( 𝐺 ‘ ( 𝑛 / 2 ) ) = ( 𝐺 ‘ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ) ) |
| 88 | oveq1 | ⊢ ( 𝑛 = ( ( 2 · 𝑚 ) − 1 ) → ( 𝑛 + 1 ) = ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) ) | |
| 89 | 88 | fvoveq1d | ⊢ ( 𝑛 = ( ( 2 · 𝑚 ) − 1 ) → ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) = ( 𝐹 ‘ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ) ) |
| 90 | 86 87 89 | ifbieq12d | ⊢ ( 𝑛 = ( ( 2 · 𝑚 ) − 1 ) → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) = if ( ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ) ) ) |
| 91 | fvex | ⊢ ( 𝐺 ‘ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ) ∈ V | |
| 92 | fvex | ⊢ ( 𝐹 ‘ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ) ∈ V | |
| 93 | 91 92 | ifex | ⊢ if ( ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ) ) ∈ V |
| 94 | 90 13 93 | fvmpt | ⊢ ( ( ( 2 · 𝑚 ) − 1 ) ∈ ℕ → ( 𝐻 ‘ ( ( 2 · 𝑚 ) − 1 ) ) = if ( ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ) ) ) |
| 95 | 84 94 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ ( ( 2 · 𝑚 ) − 1 ) ) = if ( ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ) ) ) |
| 96 | 2nn | ⊢ 2 ∈ ℕ | |
| 97 | nnmulcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( 2 · 𝑚 ) ∈ ℕ ) | |
| 98 | 96 80 97 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 2 · 𝑚 ) ∈ ℕ ) |
| 99 | 98 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 2 · 𝑚 ) ∈ ℂ ) |
| 100 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 101 | npcan | ⊢ ( ( ( 2 · 𝑚 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) = ( 2 · 𝑚 ) ) | |
| 102 | 99 100 101 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) = ( 2 · 𝑚 ) ) |
| 103 | 102 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) = ( ( 2 · 𝑚 ) / 2 ) ) |
| 104 | 2cn | ⊢ 2 ∈ ℂ | |
| 105 | 2ne0 | ⊢ 2 ≠ 0 | |
| 106 | divcan3 | ⊢ ( ( 𝑚 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 2 · 𝑚 ) / 2 ) = 𝑚 ) | |
| 107 | 104 105 106 | mp3an23 | ⊢ ( 𝑚 ∈ ℂ → ( ( 2 · 𝑚 ) / 2 ) = 𝑚 ) |
| 108 | 75 107 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 2 · 𝑚 ) / 2 ) = 𝑚 ) |
| 109 | 103 108 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) = 𝑚 ) |
| 110 | 109 80 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ∈ ℕ ) |
| 111 | nneo | ⊢ ( ( ( 2 · 𝑚 ) − 1 ) ∈ ℕ → ( ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ ↔ ¬ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ∈ ℕ ) ) | |
| 112 | 84 111 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ ↔ ¬ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ∈ ℕ ) ) |
| 113 | 112 | con2bid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ∈ ℕ ↔ ¬ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ ) ) |
| 114 | 110 113 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ¬ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ ) |
| 115 | 114 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → if ( ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ) ) = ( 𝐹 ‘ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ) ) |
| 116 | 109 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ) = ( 𝐹 ‘ 𝑚 ) ) |
| 117 | 95 115 116 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ ( ( 2 · 𝑚 ) − 1 ) ) = ( 𝐹 ‘ 𝑚 ) ) |
| 118 | fveqeq2 | ⊢ ( 𝑘 = ( ( 2 · 𝑚 ) − 1 ) → ( ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ↔ ( 𝐻 ‘ ( ( 2 · 𝑚 ) − 1 ) ) = ( 𝐹 ‘ 𝑚 ) ) ) | |
| 119 | 118 | rspcev | ⊢ ( ( ( ( 2 · 𝑚 ) − 1 ) ∈ ℕ ∧ ( 𝐻 ‘ ( ( 2 · 𝑚 ) − 1 ) ) = ( 𝐹 ‘ 𝑚 ) ) → ∃ 𝑘 ∈ ℕ ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 120 | 84 117 119 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∃ 𝑘 ∈ ℕ ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 121 | fveq2 | ⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) → ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) ) | |
| 122 | 121 | breq1d | ⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) → ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ↔ ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) |
| 123 | fveq2 | ⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) → ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) | |
| 124 | 123 | breq2d | ⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) → ( 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ↔ 𝑧 < ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 125 | 122 124 | anbi12d | ⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) → ( ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) ) ) |
| 126 | 125 | biimprcd | ⊢ ( ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) → ( ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) → ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 127 | 126 | reximdv | ⊢ ( ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) → ( ∃ 𝑘 ∈ ℕ ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) → ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 128 | 120 127 | syl5com | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) → ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 129 | 128 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) → ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 130 | 129 | ralimdv | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑚 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 131 | ovolfioo | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑚 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) ) ) | |
| 132 | 14 26 131 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑚 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) ) ) |
| 133 | ovolfioo | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐻 ) ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) | |
| 134 | 14 31 133 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐻 ) ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 135 | 130 132 134 | 3imtr4d | ⊢ ( 𝜑 → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐻 ) ) ) |
| 136 | 8 135 | mpd | ⊢ ( 𝜑 → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐻 ) ) |
| 137 | oveq1 | ⊢ ( 𝑛 = ( 2 · 𝑚 ) → ( 𝑛 / 2 ) = ( ( 2 · 𝑚 ) / 2 ) ) | |
| 138 | 137 | eleq1d | ⊢ ( 𝑛 = ( 2 · 𝑚 ) → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ( ( 2 · 𝑚 ) / 2 ) ∈ ℕ ) ) |
| 139 | 137 | fveq2d | ⊢ ( 𝑛 = ( 2 · 𝑚 ) → ( 𝐺 ‘ ( 𝑛 / 2 ) ) = ( 𝐺 ‘ ( ( 2 · 𝑚 ) / 2 ) ) ) |
| 140 | oveq1 | ⊢ ( 𝑛 = ( 2 · 𝑚 ) → ( 𝑛 + 1 ) = ( ( 2 · 𝑚 ) + 1 ) ) | |
| 141 | 140 | fvoveq1d | ⊢ ( 𝑛 = ( 2 · 𝑚 ) → ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) = ( 𝐹 ‘ ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) ) ) |
| 142 | 138 139 141 | ifbieq12d | ⊢ ( 𝑛 = ( 2 · 𝑚 ) → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) = if ( ( ( 2 · 𝑚 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · 𝑚 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) ) ) ) |
| 143 | fvex | ⊢ ( 𝐺 ‘ ( ( 2 · 𝑚 ) / 2 ) ) ∈ V | |
| 144 | fvex | ⊢ ( 𝐹 ‘ ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) ) ∈ V | |
| 145 | 143 144 | ifex | ⊢ if ( ( ( 2 · 𝑚 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · 𝑚 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) ) ) ∈ V |
| 146 | 142 13 145 | fvmpt | ⊢ ( ( 2 · 𝑚 ) ∈ ℕ → ( 𝐻 ‘ ( 2 · 𝑚 ) ) = if ( ( ( 2 · 𝑚 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · 𝑚 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) ) ) ) |
| 147 | 98 146 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ ( 2 · 𝑚 ) ) = if ( ( ( 2 · 𝑚 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · 𝑚 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) ) ) ) |
| 148 | 108 80 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 2 · 𝑚 ) / 2 ) ∈ ℕ ) |
| 149 | 148 | iftrued | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → if ( ( ( 2 · 𝑚 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · 𝑚 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) ) ) = ( 𝐺 ‘ ( ( 2 · 𝑚 ) / 2 ) ) ) |
| 150 | 108 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐺 ‘ ( ( 2 · 𝑚 ) / 2 ) ) = ( 𝐺 ‘ 𝑚 ) ) |
| 151 | 147 149 150 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ ( 2 · 𝑚 ) ) = ( 𝐺 ‘ 𝑚 ) ) |
| 152 | fveqeq2 | ⊢ ( 𝑘 = ( 2 · 𝑚 ) → ( ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) ↔ ( 𝐻 ‘ ( 2 · 𝑚 ) ) = ( 𝐺 ‘ 𝑚 ) ) ) | |
| 153 | 152 | rspcev | ⊢ ( ( ( 2 · 𝑚 ) ∈ ℕ ∧ ( 𝐻 ‘ ( 2 · 𝑚 ) ) = ( 𝐺 ‘ 𝑚 ) ) → ∃ 𝑘 ∈ ℕ ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) ) |
| 154 | 98 151 153 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∃ 𝑘 ∈ ℕ ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) ) |
| 155 | fveq2 | ⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) → ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) ) | |
| 156 | 155 | breq1d | ⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) → ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ↔ ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) < 𝑧 ) ) |
| 157 | fveq2 | ⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) → ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) | |
| 158 | 157 | breq2d | ⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) → ( 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ↔ 𝑧 < ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) |
| 159 | 156 158 | anbi12d | ⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) → ( ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ ( ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ) |
| 160 | 159 | biimprcd | ⊢ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) → ( ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) → ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 161 | 160 | reximdv | ⊢ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) → ( ∃ 𝑘 ∈ ℕ ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) → ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 162 | 154 161 | syl5com | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) → ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 163 | 162 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) → ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 164 | 163 | ralimdv | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑚 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) → ∀ 𝑧 ∈ 𝐵 ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 165 | ovolfioo | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ↔ ∀ 𝑧 ∈ 𝐵 ∃ 𝑚 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ) | |
| 166 | 15 18 165 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ↔ ∀ 𝑧 ∈ 𝐵 ∃ 𝑚 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ) |
| 167 | ovolfioo | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐻 ) ↔ ∀ 𝑧 ∈ 𝐵 ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) | |
| 168 | 15 31 167 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐻 ) ↔ ∀ 𝑧 ∈ 𝐵 ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 169 | 164 166 168 | 3imtr4d | ⊢ ( 𝜑 → ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐺 ) → 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐻 ) ) ) |
| 170 | 11 169 | mpd | ⊢ ( 𝜑 → 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐻 ) ) |
| 171 | 136 170 | unssd | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝐻 ) ) |
| 172 | 6 | ovollb | ⊢ ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝐴 ∪ 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝐻 ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ sup ( ran 𝑈 , ℝ* , < ) ) |
| 173 | 31 171 172 | syl2anc | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ sup ( ran 𝑈 , ℝ* , < ) ) |
| 174 | ovollecl | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ℝ ∧ sup ( ran 𝑈 , ℝ* , < ) ∈ ℝ ∧ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ sup ( ran 𝑈 , ℝ* , < ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ ) | |
| 175 | 16 73 173 174 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ ) |
| 176 | 58 | rexrd | ⊢ ( 𝜑 → ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ∈ ℝ* ) |
| 177 | supxrleub | ⊢ ( ( ran 𝑈 ⊆ ℝ* ∧ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ∈ ℝ* ) → ( sup ( ran 𝑈 , ℝ* , < ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ↔ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) ) | |
| 178 | 68 176 177 | syl2anc | ⊢ ( 𝜑 → ( sup ( ran 𝑈 , ℝ* , < ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ↔ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) ) |
| 179 | 64 178 | mpbird | ⊢ ( 𝜑 → sup ( ran 𝑈 , ℝ* , < ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |
| 180 | 175 73 58 173 179 | letrd | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |