This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolun . (Contributed by Mario Carneiro, 7-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolun.a | |- ( ph -> ( A C_ RR /\ ( vol* ` A ) e. RR ) ) |
|
| ovolun.b | |- ( ph -> ( B C_ RR /\ ( vol* ` B ) e. RR ) ) |
||
| ovolun.c | |- ( ph -> C e. RR+ ) |
||
| ovolun.s | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| ovolun.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
||
| ovolun.u | |- U = seq 1 ( + , ( ( abs o. - ) o. H ) ) |
||
| ovolun.f1 | |- ( ph -> F e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
||
| ovolun.f2 | |- ( ph -> A C_ U. ran ( (,) o. F ) ) |
||
| ovolun.f3 | |- ( ph -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( C / 2 ) ) ) |
||
| ovolun.g1 | |- ( ph -> G e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
||
| ovolun.g2 | |- ( ph -> B C_ U. ran ( (,) o. G ) ) |
||
| ovolun.g3 | |- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` B ) + ( C / 2 ) ) ) |
||
| ovolun.h | |- H = ( n e. NN |-> if ( ( n / 2 ) e. NN , ( G ` ( n / 2 ) ) , ( F ` ( ( n + 1 ) / 2 ) ) ) ) |
||
| Assertion | ovolunlem1a | |- ( ( ph /\ k e. NN ) -> ( U ` k ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolun.a | |- ( ph -> ( A C_ RR /\ ( vol* ` A ) e. RR ) ) |
|
| 2 | ovolun.b | |- ( ph -> ( B C_ RR /\ ( vol* ` B ) e. RR ) ) |
|
| 3 | ovolun.c | |- ( ph -> C e. RR+ ) |
|
| 4 | ovolun.s | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 5 | ovolun.t | |- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
|
| 6 | ovolun.u | |- U = seq 1 ( + , ( ( abs o. - ) o. H ) ) |
|
| 7 | ovolun.f1 | |- ( ph -> F e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
|
| 8 | ovolun.f2 | |- ( ph -> A C_ U. ran ( (,) o. F ) ) |
|
| 9 | ovolun.f3 | |- ( ph -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( C / 2 ) ) ) |
|
| 10 | ovolun.g1 | |- ( ph -> G e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
|
| 11 | ovolun.g2 | |- ( ph -> B C_ U. ran ( (,) o. G ) ) |
|
| 12 | ovolun.g3 | |- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` B ) + ( C / 2 ) ) ) |
|
| 13 | ovolun.h | |- H = ( n e. NN |-> if ( ( n / 2 ) e. NN , ( G ` ( n / 2 ) ) , ( F ` ( ( n + 1 ) / 2 ) ) ) ) |
|
| 14 | elovolmlem | |- ( G e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 15 | 10 14 | sylib | |- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 16 | 15 | adantr | |- ( ( ph /\ n e. NN ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 17 | 16 | ffvelcdmda | |- ( ( ( ph /\ n e. NN ) /\ ( n / 2 ) e. NN ) -> ( G ` ( n / 2 ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 18 | nneo | |- ( n e. NN -> ( ( n / 2 ) e. NN <-> -. ( ( n + 1 ) / 2 ) e. NN ) ) |
|
| 19 | 18 | adantl | |- ( ( ph /\ n e. NN ) -> ( ( n / 2 ) e. NN <-> -. ( ( n + 1 ) / 2 ) e. NN ) ) |
| 20 | 19 | con2bid | |- ( ( ph /\ n e. NN ) -> ( ( ( n + 1 ) / 2 ) e. NN <-> -. ( n / 2 ) e. NN ) ) |
| 21 | 20 | biimpar | |- ( ( ( ph /\ n e. NN ) /\ -. ( n / 2 ) e. NN ) -> ( ( n + 1 ) / 2 ) e. NN ) |
| 22 | elovolmlem | |- ( F e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 23 | 7 22 | sylib | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 24 | 23 | adantr | |- ( ( ph /\ n e. NN ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 25 | 24 | ffvelcdmda | |- ( ( ( ph /\ n e. NN ) /\ ( ( n + 1 ) / 2 ) e. NN ) -> ( F ` ( ( n + 1 ) / 2 ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 26 | 21 25 | syldan | |- ( ( ( ph /\ n e. NN ) /\ -. ( n / 2 ) e. NN ) -> ( F ` ( ( n + 1 ) / 2 ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 27 | 17 26 | ifclda | |- ( ( ph /\ n e. NN ) -> if ( ( n / 2 ) e. NN , ( G ` ( n / 2 ) ) , ( F ` ( ( n + 1 ) / 2 ) ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 28 | 27 13 | fmptd | |- ( ph -> H : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 29 | eqid | |- ( ( abs o. - ) o. H ) = ( ( abs o. - ) o. H ) |
|
| 30 | 29 6 | ovolsf | |- ( H : NN --> ( <_ i^i ( RR X. RR ) ) -> U : NN --> ( 0 [,) +oo ) ) |
| 31 | 28 30 | syl | |- ( ph -> U : NN --> ( 0 [,) +oo ) ) |
| 32 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 33 | fss | |- ( ( U : NN --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> U : NN --> RR ) |
|
| 34 | 31 32 33 | sylancl | |- ( ph -> U : NN --> RR ) |
| 35 | 34 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( U ` k ) e. RR ) |
| 36 | 2nn | |- 2 e. NN |
|
| 37 | peano2nn | |- ( k e. NN -> ( k + 1 ) e. NN ) |
|
| 38 | 37 | adantl | |- ( ( ph /\ k e. NN ) -> ( k + 1 ) e. NN ) |
| 39 | 38 | nnred | |- ( ( ph /\ k e. NN ) -> ( k + 1 ) e. RR ) |
| 40 | 39 | rehalfcld | |- ( ( ph /\ k e. NN ) -> ( ( k + 1 ) / 2 ) e. RR ) |
| 41 | 40 | flcld | |- ( ( ph /\ k e. NN ) -> ( |_ ` ( ( k + 1 ) / 2 ) ) e. ZZ ) |
| 42 | ax-1cn | |- 1 e. CC |
|
| 43 | 42 | 2timesi | |- ( 2 x. 1 ) = ( 1 + 1 ) |
| 44 | nnge1 | |- ( k e. NN -> 1 <_ k ) |
|
| 45 | 44 | adantl | |- ( ( ph /\ k e. NN ) -> 1 <_ k ) |
| 46 | nnre | |- ( k e. NN -> k e. RR ) |
|
| 47 | 46 | adantl | |- ( ( ph /\ k e. NN ) -> k e. RR ) |
| 48 | 1re | |- 1 e. RR |
|
| 49 | leadd1 | |- ( ( 1 e. RR /\ k e. RR /\ 1 e. RR ) -> ( 1 <_ k <-> ( 1 + 1 ) <_ ( k + 1 ) ) ) |
|
| 50 | 48 48 49 | mp3an13 | |- ( k e. RR -> ( 1 <_ k <-> ( 1 + 1 ) <_ ( k + 1 ) ) ) |
| 51 | 47 50 | syl | |- ( ( ph /\ k e. NN ) -> ( 1 <_ k <-> ( 1 + 1 ) <_ ( k + 1 ) ) ) |
| 52 | 45 51 | mpbid | |- ( ( ph /\ k e. NN ) -> ( 1 + 1 ) <_ ( k + 1 ) ) |
| 53 | 43 52 | eqbrtrid | |- ( ( ph /\ k e. NN ) -> ( 2 x. 1 ) <_ ( k + 1 ) ) |
| 54 | 2re | |- 2 e. RR |
|
| 55 | 2pos | |- 0 < 2 |
|
| 56 | 54 55 | pm3.2i | |- ( 2 e. RR /\ 0 < 2 ) |
| 57 | lemuldiv2 | |- ( ( 1 e. RR /\ ( k + 1 ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. 1 ) <_ ( k + 1 ) <-> 1 <_ ( ( k + 1 ) / 2 ) ) ) |
|
| 58 | 48 56 57 | mp3an13 | |- ( ( k + 1 ) e. RR -> ( ( 2 x. 1 ) <_ ( k + 1 ) <-> 1 <_ ( ( k + 1 ) / 2 ) ) ) |
| 59 | 39 58 | syl | |- ( ( ph /\ k e. NN ) -> ( ( 2 x. 1 ) <_ ( k + 1 ) <-> 1 <_ ( ( k + 1 ) / 2 ) ) ) |
| 60 | 53 59 | mpbid | |- ( ( ph /\ k e. NN ) -> 1 <_ ( ( k + 1 ) / 2 ) ) |
| 61 | 1z | |- 1 e. ZZ |
|
| 62 | flge | |- ( ( ( ( k + 1 ) / 2 ) e. RR /\ 1 e. ZZ ) -> ( 1 <_ ( ( k + 1 ) / 2 ) <-> 1 <_ ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) |
|
| 63 | 40 61 62 | sylancl | |- ( ( ph /\ k e. NN ) -> ( 1 <_ ( ( k + 1 ) / 2 ) <-> 1 <_ ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) |
| 64 | 60 63 | mpbid | |- ( ( ph /\ k e. NN ) -> 1 <_ ( |_ ` ( ( k + 1 ) / 2 ) ) ) |
| 65 | elnnz1 | |- ( ( |_ ` ( ( k + 1 ) / 2 ) ) e. NN <-> ( ( |_ ` ( ( k + 1 ) / 2 ) ) e. ZZ /\ 1 <_ ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) |
|
| 66 | 41 64 65 | sylanbrc | |- ( ( ph /\ k e. NN ) -> ( |_ ` ( ( k + 1 ) / 2 ) ) e. NN ) |
| 67 | nnmulcl | |- ( ( 2 e. NN /\ ( |_ ` ( ( k + 1 ) / 2 ) ) e. NN ) -> ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) e. NN ) |
|
| 68 | 36 66 67 | sylancr | |- ( ( ph /\ k e. NN ) -> ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) e. NN ) |
| 69 | 34 | ffvelcdmda | |- ( ( ph /\ ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) e. NN ) -> ( U ` ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) e. RR ) |
| 70 | 68 69 | syldan | |- ( ( ph /\ k e. NN ) -> ( U ` ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) e. RR ) |
| 71 | 1 | simprd | |- ( ph -> ( vol* ` A ) e. RR ) |
| 72 | 2 | simprd | |- ( ph -> ( vol* ` B ) e. RR ) |
| 73 | 71 72 | readdcld | |- ( ph -> ( ( vol* ` A ) + ( vol* ` B ) ) e. RR ) |
| 74 | 3 | rpred | |- ( ph -> C e. RR ) |
| 75 | 73 74 | readdcld | |- ( ph -> ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) e. RR ) |
| 76 | 75 | adantr | |- ( ( ph /\ k e. NN ) -> ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) e. RR ) |
| 77 | simpr | |- ( ( ph /\ k e. NN ) -> k e. NN ) |
|
| 78 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 79 | 77 78 | eleqtrdi | |- ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
| 80 | nnz | |- ( k e. NN -> k e. ZZ ) |
|
| 81 | 80 | adantl | |- ( ( ph /\ k e. NN ) -> k e. ZZ ) |
| 82 | flhalf | |- ( k e. ZZ -> k <_ ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) |
|
| 83 | 81 82 | syl | |- ( ( ph /\ k e. NN ) -> k <_ ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) |
| 84 | nnz | |- ( ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) e. NN -> ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) e. ZZ ) |
|
| 85 | eluz | |- ( ( k e. ZZ /\ ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) e. ZZ ) -> ( ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) e. ( ZZ>= ` k ) <-> k <_ ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) ) |
|
| 86 | 80 84 85 | syl2an | |- ( ( k e. NN /\ ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) e. NN ) -> ( ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) e. ( ZZ>= ` k ) <-> k <_ ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) ) |
| 87 | 77 68 86 | syl2anc | |- ( ( ph /\ k e. NN ) -> ( ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) e. ( ZZ>= ` k ) <-> k <_ ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) ) |
| 88 | 83 87 | mpbird | |- ( ( ph /\ k e. NN ) -> ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) e. ( ZZ>= ` k ) ) |
| 89 | elfznn | |- ( j e. ( 1 ... ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) -> j e. NN ) |
|
| 90 | 29 | ovolfsf | |- ( H : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( abs o. - ) o. H ) : NN --> ( 0 [,) +oo ) ) |
| 91 | 28 90 | syl | |- ( ph -> ( ( abs o. - ) o. H ) : NN --> ( 0 [,) +oo ) ) |
| 92 | 91 | adantr | |- ( ( ph /\ k e. NN ) -> ( ( abs o. - ) o. H ) : NN --> ( 0 [,) +oo ) ) |
| 93 | 92 | ffvelcdmda | |- ( ( ( ph /\ k e. NN ) /\ j e. NN ) -> ( ( ( abs o. - ) o. H ) ` j ) e. ( 0 [,) +oo ) ) |
| 94 | elrege0 | |- ( ( ( ( abs o. - ) o. H ) ` j ) e. ( 0 [,) +oo ) <-> ( ( ( ( abs o. - ) o. H ) ` j ) e. RR /\ 0 <_ ( ( ( abs o. - ) o. H ) ` j ) ) ) |
|
| 95 | 93 94 | sylib | |- ( ( ( ph /\ k e. NN ) /\ j e. NN ) -> ( ( ( ( abs o. - ) o. H ) ` j ) e. RR /\ 0 <_ ( ( ( abs o. - ) o. H ) ` j ) ) ) |
| 96 | 95 | simpld | |- ( ( ( ph /\ k e. NN ) /\ j e. NN ) -> ( ( ( abs o. - ) o. H ) ` j ) e. RR ) |
| 97 | 89 96 | sylan2 | |- ( ( ( ph /\ k e. NN ) /\ j e. ( 1 ... ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) ) -> ( ( ( abs o. - ) o. H ) ` j ) e. RR ) |
| 98 | elfzuz | |- ( j e. ( ( k + 1 ) ... ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) -> j e. ( ZZ>= ` ( k + 1 ) ) ) |
|
| 99 | eluznn | |- ( ( ( k + 1 ) e. NN /\ j e. ( ZZ>= ` ( k + 1 ) ) ) -> j e. NN ) |
|
| 100 | 38 98 99 | syl2an | |- ( ( ( ph /\ k e. NN ) /\ j e. ( ( k + 1 ) ... ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) ) -> j e. NN ) |
| 101 | 95 | simprd | |- ( ( ( ph /\ k e. NN ) /\ j e. NN ) -> 0 <_ ( ( ( abs o. - ) o. H ) ` j ) ) |
| 102 | 100 101 | syldan | |- ( ( ( ph /\ k e. NN ) /\ j e. ( ( k + 1 ) ... ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) ) -> 0 <_ ( ( ( abs o. - ) o. H ) ` j ) ) |
| 103 | 79 88 97 102 | sermono | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` k ) <_ ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) ) |
| 104 | 6 | fveq1i | |- ( U ` k ) = ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` k ) |
| 105 | 6 | fveq1i | |- ( U ` ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) = ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) |
| 106 | 103 104 105 | 3brtr4g | |- ( ( ph /\ k e. NN ) -> ( U ` k ) <_ ( U ` ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) ) |
| 107 | eqid | |- ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. F ) |
|
| 108 | 107 4 | ovolsf | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) |
| 109 | 23 108 | syl | |- ( ph -> S : NN --> ( 0 [,) +oo ) ) |
| 110 | 109 | frnd | |- ( ph -> ran S C_ ( 0 [,) +oo ) ) |
| 111 | 110 32 | sstrdi | |- ( ph -> ran S C_ RR ) |
| 112 | 111 | adantr | |- ( ( ph /\ k e. NN ) -> ran S C_ RR ) |
| 113 | 109 | ffnd | |- ( ph -> S Fn NN ) |
| 114 | fnfvelrn | |- ( ( S Fn NN /\ ( |_ ` ( ( k + 1 ) / 2 ) ) e. NN ) -> ( S ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) e. ran S ) |
|
| 115 | 113 66 114 | syl2an2r | |- ( ( ph /\ k e. NN ) -> ( S ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) e. ran S ) |
| 116 | 112 115 | sseldd | |- ( ( ph /\ k e. NN ) -> ( S ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) e. RR ) |
| 117 | eqid | |- ( ( abs o. - ) o. G ) = ( ( abs o. - ) o. G ) |
|
| 118 | 117 5 | ovolsf | |- ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> T : NN --> ( 0 [,) +oo ) ) |
| 119 | 15 118 | syl | |- ( ph -> T : NN --> ( 0 [,) +oo ) ) |
| 120 | 119 | frnd | |- ( ph -> ran T C_ ( 0 [,) +oo ) ) |
| 121 | 120 32 | sstrdi | |- ( ph -> ran T C_ RR ) |
| 122 | 121 | adantr | |- ( ( ph /\ k e. NN ) -> ran T C_ RR ) |
| 123 | 119 | ffnd | |- ( ph -> T Fn NN ) |
| 124 | fnfvelrn | |- ( ( T Fn NN /\ ( |_ ` ( ( k + 1 ) / 2 ) ) e. NN ) -> ( T ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) e. ran T ) |
|
| 125 | 123 66 124 | syl2an2r | |- ( ( ph /\ k e. NN ) -> ( T ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) e. ran T ) |
| 126 | 122 125 | sseldd | |- ( ( ph /\ k e. NN ) -> ( T ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) e. RR ) |
| 127 | 74 | rehalfcld | |- ( ph -> ( C / 2 ) e. RR ) |
| 128 | 71 127 | readdcld | |- ( ph -> ( ( vol* ` A ) + ( C / 2 ) ) e. RR ) |
| 129 | 128 | adantr | |- ( ( ph /\ k e. NN ) -> ( ( vol* ` A ) + ( C / 2 ) ) e. RR ) |
| 130 | 72 127 | readdcld | |- ( ph -> ( ( vol* ` B ) + ( C / 2 ) ) e. RR ) |
| 131 | 130 | adantr | |- ( ( ph /\ k e. NN ) -> ( ( vol* ` B ) + ( C / 2 ) ) e. RR ) |
| 132 | ressxr | |- RR C_ RR* |
|
| 133 | 111 132 | sstrdi | |- ( ph -> ran S C_ RR* ) |
| 134 | supxrcl | |- ( ran S C_ RR* -> sup ( ran S , RR* , < ) e. RR* ) |
|
| 135 | 133 134 | syl | |- ( ph -> sup ( ran S , RR* , < ) e. RR* ) |
| 136 | 1nn | |- 1 e. NN |
|
| 137 | 109 | fdmd | |- ( ph -> dom S = NN ) |
| 138 | 136 137 | eleqtrrid | |- ( ph -> 1 e. dom S ) |
| 139 | 138 | ne0d | |- ( ph -> dom S =/= (/) ) |
| 140 | dm0rn0 | |- ( dom S = (/) <-> ran S = (/) ) |
|
| 141 | 140 | necon3bii | |- ( dom S =/= (/) <-> ran S =/= (/) ) |
| 142 | 139 141 | sylib | |- ( ph -> ran S =/= (/) ) |
| 143 | supxrgtmnf | |- ( ( ran S C_ RR /\ ran S =/= (/) ) -> -oo < sup ( ran S , RR* , < ) ) |
|
| 144 | 111 142 143 | syl2anc | |- ( ph -> -oo < sup ( ran S , RR* , < ) ) |
| 145 | xrre | |- ( ( ( sup ( ran S , RR* , < ) e. RR* /\ ( ( vol* ` A ) + ( C / 2 ) ) e. RR ) /\ ( -oo < sup ( ran S , RR* , < ) /\ sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( C / 2 ) ) ) ) -> sup ( ran S , RR* , < ) e. RR ) |
|
| 146 | 135 128 144 9 145 | syl22anc | |- ( ph -> sup ( ran S , RR* , < ) e. RR ) |
| 147 | 146 | adantr | |- ( ( ph /\ k e. NN ) -> sup ( ran S , RR* , < ) e. RR ) |
| 148 | supxrub | |- ( ( ran S C_ RR* /\ ( S ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) e. ran S ) -> ( S ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) <_ sup ( ran S , RR* , < ) ) |
|
| 149 | 133 115 148 | syl2an2r | |- ( ( ph /\ k e. NN ) -> ( S ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) <_ sup ( ran S , RR* , < ) ) |
| 150 | 9 | adantr | |- ( ( ph /\ k e. NN ) -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( C / 2 ) ) ) |
| 151 | 116 147 129 149 150 | letrd | |- ( ( ph /\ k e. NN ) -> ( S ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) <_ ( ( vol* ` A ) + ( C / 2 ) ) ) |
| 152 | 121 132 | sstrdi | |- ( ph -> ran T C_ RR* ) |
| 153 | supxrcl | |- ( ran T C_ RR* -> sup ( ran T , RR* , < ) e. RR* ) |
|
| 154 | 152 153 | syl | |- ( ph -> sup ( ran T , RR* , < ) e. RR* ) |
| 155 | 119 | fdmd | |- ( ph -> dom T = NN ) |
| 156 | 136 155 | eleqtrrid | |- ( ph -> 1 e. dom T ) |
| 157 | 156 | ne0d | |- ( ph -> dom T =/= (/) ) |
| 158 | dm0rn0 | |- ( dom T = (/) <-> ran T = (/) ) |
|
| 159 | 158 | necon3bii | |- ( dom T =/= (/) <-> ran T =/= (/) ) |
| 160 | 157 159 | sylib | |- ( ph -> ran T =/= (/) ) |
| 161 | supxrgtmnf | |- ( ( ran T C_ RR /\ ran T =/= (/) ) -> -oo < sup ( ran T , RR* , < ) ) |
|
| 162 | 121 160 161 | syl2anc | |- ( ph -> -oo < sup ( ran T , RR* , < ) ) |
| 163 | xrre | |- ( ( ( sup ( ran T , RR* , < ) e. RR* /\ ( ( vol* ` B ) + ( C / 2 ) ) e. RR ) /\ ( -oo < sup ( ran T , RR* , < ) /\ sup ( ran T , RR* , < ) <_ ( ( vol* ` B ) + ( C / 2 ) ) ) ) -> sup ( ran T , RR* , < ) e. RR ) |
|
| 164 | 154 130 162 12 163 | syl22anc | |- ( ph -> sup ( ran T , RR* , < ) e. RR ) |
| 165 | 164 | adantr | |- ( ( ph /\ k e. NN ) -> sup ( ran T , RR* , < ) e. RR ) |
| 166 | supxrub | |- ( ( ran T C_ RR* /\ ( T ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) e. ran T ) -> ( T ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) <_ sup ( ran T , RR* , < ) ) |
|
| 167 | 152 125 166 | syl2an2r | |- ( ( ph /\ k e. NN ) -> ( T ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) <_ sup ( ran T , RR* , < ) ) |
| 168 | 12 | adantr | |- ( ( ph /\ k e. NN ) -> sup ( ran T , RR* , < ) <_ ( ( vol* ` B ) + ( C / 2 ) ) ) |
| 169 | 126 165 131 167 168 | letrd | |- ( ( ph /\ k e. NN ) -> ( T ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) <_ ( ( vol* ` B ) + ( C / 2 ) ) ) |
| 170 | 116 126 129 131 151 169 | le2addd | |- ( ( ph /\ k e. NN ) -> ( ( S ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) + ( T ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) <_ ( ( ( vol* ` A ) + ( C / 2 ) ) + ( ( vol* ` B ) + ( C / 2 ) ) ) ) |
| 171 | oveq2 | |- ( z = 1 -> ( 2 x. z ) = ( 2 x. 1 ) ) |
|
| 172 | 171 | fveq2d | |- ( z = 1 -> ( U ` ( 2 x. z ) ) = ( U ` ( 2 x. 1 ) ) ) |
| 173 | fveq2 | |- ( z = 1 -> ( S ` z ) = ( S ` 1 ) ) |
|
| 174 | fveq2 | |- ( z = 1 -> ( T ` z ) = ( T ` 1 ) ) |
|
| 175 | 173 174 | oveq12d | |- ( z = 1 -> ( ( S ` z ) + ( T ` z ) ) = ( ( S ` 1 ) + ( T ` 1 ) ) ) |
| 176 | 172 175 | eqeq12d | |- ( z = 1 -> ( ( U ` ( 2 x. z ) ) = ( ( S ` z ) + ( T ` z ) ) <-> ( U ` ( 2 x. 1 ) ) = ( ( S ` 1 ) + ( T ` 1 ) ) ) ) |
| 177 | 176 | imbi2d | |- ( z = 1 -> ( ( ph -> ( U ` ( 2 x. z ) ) = ( ( S ` z ) + ( T ` z ) ) ) <-> ( ph -> ( U ` ( 2 x. 1 ) ) = ( ( S ` 1 ) + ( T ` 1 ) ) ) ) ) |
| 178 | oveq2 | |- ( z = k -> ( 2 x. z ) = ( 2 x. k ) ) |
|
| 179 | 178 | fveq2d | |- ( z = k -> ( U ` ( 2 x. z ) ) = ( U ` ( 2 x. k ) ) ) |
| 180 | fveq2 | |- ( z = k -> ( S ` z ) = ( S ` k ) ) |
|
| 181 | fveq2 | |- ( z = k -> ( T ` z ) = ( T ` k ) ) |
|
| 182 | 180 181 | oveq12d | |- ( z = k -> ( ( S ` z ) + ( T ` z ) ) = ( ( S ` k ) + ( T ` k ) ) ) |
| 183 | 179 182 | eqeq12d | |- ( z = k -> ( ( U ` ( 2 x. z ) ) = ( ( S ` z ) + ( T ` z ) ) <-> ( U ` ( 2 x. k ) ) = ( ( S ` k ) + ( T ` k ) ) ) ) |
| 184 | 183 | imbi2d | |- ( z = k -> ( ( ph -> ( U ` ( 2 x. z ) ) = ( ( S ` z ) + ( T ` z ) ) ) <-> ( ph -> ( U ` ( 2 x. k ) ) = ( ( S ` k ) + ( T ` k ) ) ) ) ) |
| 185 | oveq2 | |- ( z = ( k + 1 ) -> ( 2 x. z ) = ( 2 x. ( k + 1 ) ) ) |
|
| 186 | 185 | fveq2d | |- ( z = ( k + 1 ) -> ( U ` ( 2 x. z ) ) = ( U ` ( 2 x. ( k + 1 ) ) ) ) |
| 187 | fveq2 | |- ( z = ( k + 1 ) -> ( S ` z ) = ( S ` ( k + 1 ) ) ) |
|
| 188 | fveq2 | |- ( z = ( k + 1 ) -> ( T ` z ) = ( T ` ( k + 1 ) ) ) |
|
| 189 | 187 188 | oveq12d | |- ( z = ( k + 1 ) -> ( ( S ` z ) + ( T ` z ) ) = ( ( S ` ( k + 1 ) ) + ( T ` ( k + 1 ) ) ) ) |
| 190 | 186 189 | eqeq12d | |- ( z = ( k + 1 ) -> ( ( U ` ( 2 x. z ) ) = ( ( S ` z ) + ( T ` z ) ) <-> ( U ` ( 2 x. ( k + 1 ) ) ) = ( ( S ` ( k + 1 ) ) + ( T ` ( k + 1 ) ) ) ) ) |
| 191 | 190 | imbi2d | |- ( z = ( k + 1 ) -> ( ( ph -> ( U ` ( 2 x. z ) ) = ( ( S ` z ) + ( T ` z ) ) ) <-> ( ph -> ( U ` ( 2 x. ( k + 1 ) ) ) = ( ( S ` ( k + 1 ) ) + ( T ` ( k + 1 ) ) ) ) ) ) |
| 192 | oveq2 | |- ( z = ( |_ ` ( ( k + 1 ) / 2 ) ) -> ( 2 x. z ) = ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) |
|
| 193 | 192 | fveq2d | |- ( z = ( |_ ` ( ( k + 1 ) / 2 ) ) -> ( U ` ( 2 x. z ) ) = ( U ` ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) ) |
| 194 | fveq2 | |- ( z = ( |_ ` ( ( k + 1 ) / 2 ) ) -> ( S ` z ) = ( S ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) |
|
| 195 | fveq2 | |- ( z = ( |_ ` ( ( k + 1 ) / 2 ) ) -> ( T ` z ) = ( T ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) |
|
| 196 | 194 195 | oveq12d | |- ( z = ( |_ ` ( ( k + 1 ) / 2 ) ) -> ( ( S ` z ) + ( T ` z ) ) = ( ( S ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) + ( T ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) ) |
| 197 | 193 196 | eqeq12d | |- ( z = ( |_ ` ( ( k + 1 ) / 2 ) ) -> ( ( U ` ( 2 x. z ) ) = ( ( S ` z ) + ( T ` z ) ) <-> ( U ` ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) = ( ( S ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) + ( T ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) ) ) |
| 198 | 197 | imbi2d | |- ( z = ( |_ ` ( ( k + 1 ) / 2 ) ) -> ( ( ph -> ( U ` ( 2 x. z ) ) = ( ( S ` z ) + ( T ` z ) ) ) <-> ( ph -> ( U ` ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) = ( ( S ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) + ( T ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) ) ) ) |
| 199 | 6 | fveq1i | |- ( U ` ( 2 x. 1 ) ) = ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` ( 2 x. 1 ) ) |
| 200 | 136 | a1i | |- ( ph -> 1 e. NN ) |
| 201 | 29 | ovolfsval | |- ( ( H : NN --> ( <_ i^i ( RR X. RR ) ) /\ 1 e. NN ) -> ( ( ( abs o. - ) o. H ) ` 1 ) = ( ( 2nd ` ( H ` 1 ) ) - ( 1st ` ( H ` 1 ) ) ) ) |
| 202 | 28 136 201 | sylancl | |- ( ph -> ( ( ( abs o. - ) o. H ) ` 1 ) = ( ( 2nd ` ( H ` 1 ) ) - ( 1st ` ( H ` 1 ) ) ) ) |
| 203 | halfnz | |- -. ( 1 / 2 ) e. ZZ |
|
| 204 | nnz | |- ( ( n / 2 ) e. NN -> ( n / 2 ) e. ZZ ) |
|
| 205 | oveq1 | |- ( n = 1 -> ( n / 2 ) = ( 1 / 2 ) ) |
|
| 206 | 205 | eleq1d | |- ( n = 1 -> ( ( n / 2 ) e. ZZ <-> ( 1 / 2 ) e. ZZ ) ) |
| 207 | 204 206 | imbitrid | |- ( n = 1 -> ( ( n / 2 ) e. NN -> ( 1 / 2 ) e. ZZ ) ) |
| 208 | 203 207 | mtoi | |- ( n = 1 -> -. ( n / 2 ) e. NN ) |
| 209 | 208 | iffalsed | |- ( n = 1 -> if ( ( n / 2 ) e. NN , ( G ` ( n / 2 ) ) , ( F ` ( ( n + 1 ) / 2 ) ) ) = ( F ` ( ( n + 1 ) / 2 ) ) ) |
| 210 | oveq1 | |- ( n = 1 -> ( n + 1 ) = ( 1 + 1 ) ) |
|
| 211 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 212 | 210 211 | eqtr4di | |- ( n = 1 -> ( n + 1 ) = 2 ) |
| 213 | 212 | oveq1d | |- ( n = 1 -> ( ( n + 1 ) / 2 ) = ( 2 / 2 ) ) |
| 214 | 2div2e1 | |- ( 2 / 2 ) = 1 |
|
| 215 | 213 214 | eqtrdi | |- ( n = 1 -> ( ( n + 1 ) / 2 ) = 1 ) |
| 216 | 215 | fveq2d | |- ( n = 1 -> ( F ` ( ( n + 1 ) / 2 ) ) = ( F ` 1 ) ) |
| 217 | 209 216 | eqtrd | |- ( n = 1 -> if ( ( n / 2 ) e. NN , ( G ` ( n / 2 ) ) , ( F ` ( ( n + 1 ) / 2 ) ) ) = ( F ` 1 ) ) |
| 218 | fvex | |- ( F ` 1 ) e. _V |
|
| 219 | 217 13 218 | fvmpt | |- ( 1 e. NN -> ( H ` 1 ) = ( F ` 1 ) ) |
| 220 | 136 219 | ax-mp | |- ( H ` 1 ) = ( F ` 1 ) |
| 221 | 220 | fveq2i | |- ( 2nd ` ( H ` 1 ) ) = ( 2nd ` ( F ` 1 ) ) |
| 222 | 220 | fveq2i | |- ( 1st ` ( H ` 1 ) ) = ( 1st ` ( F ` 1 ) ) |
| 223 | 221 222 | oveq12i | |- ( ( 2nd ` ( H ` 1 ) ) - ( 1st ` ( H ` 1 ) ) ) = ( ( 2nd ` ( F ` 1 ) ) - ( 1st ` ( F ` 1 ) ) ) |
| 224 | 202 223 | eqtrdi | |- ( ph -> ( ( ( abs o. - ) o. H ) ` 1 ) = ( ( 2nd ` ( F ` 1 ) ) - ( 1st ` ( F ` 1 ) ) ) ) |
| 225 | 61 224 | seq1i | |- ( ph -> ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` 1 ) = ( ( 2nd ` ( F ` 1 ) ) - ( 1st ` ( F ` 1 ) ) ) ) |
| 226 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
| 227 | 226 | fveq2i | |- ( ( ( abs o. - ) o. H ) ` ( 2 x. 1 ) ) = ( ( ( abs o. - ) o. H ) ` 2 ) |
| 228 | 29 | ovolfsval | |- ( ( H : NN --> ( <_ i^i ( RR X. RR ) ) /\ 2 e. NN ) -> ( ( ( abs o. - ) o. H ) ` 2 ) = ( ( 2nd ` ( H ` 2 ) ) - ( 1st ` ( H ` 2 ) ) ) ) |
| 229 | 28 36 228 | sylancl | |- ( ph -> ( ( ( abs o. - ) o. H ) ` 2 ) = ( ( 2nd ` ( H ` 2 ) ) - ( 1st ` ( H ` 2 ) ) ) ) |
| 230 | oveq1 | |- ( n = 2 -> ( n / 2 ) = ( 2 / 2 ) ) |
|
| 231 | 230 214 | eqtrdi | |- ( n = 2 -> ( n / 2 ) = 1 ) |
| 232 | 231 136 | eqeltrdi | |- ( n = 2 -> ( n / 2 ) e. NN ) |
| 233 | 232 | iftrued | |- ( n = 2 -> if ( ( n / 2 ) e. NN , ( G ` ( n / 2 ) ) , ( F ` ( ( n + 1 ) / 2 ) ) ) = ( G ` ( n / 2 ) ) ) |
| 234 | 231 | fveq2d | |- ( n = 2 -> ( G ` ( n / 2 ) ) = ( G ` 1 ) ) |
| 235 | 233 234 | eqtrd | |- ( n = 2 -> if ( ( n / 2 ) e. NN , ( G ` ( n / 2 ) ) , ( F ` ( ( n + 1 ) / 2 ) ) ) = ( G ` 1 ) ) |
| 236 | fvex | |- ( G ` 1 ) e. _V |
|
| 237 | 235 13 236 | fvmpt | |- ( 2 e. NN -> ( H ` 2 ) = ( G ` 1 ) ) |
| 238 | 36 237 | ax-mp | |- ( H ` 2 ) = ( G ` 1 ) |
| 239 | 238 | fveq2i | |- ( 2nd ` ( H ` 2 ) ) = ( 2nd ` ( G ` 1 ) ) |
| 240 | 238 | fveq2i | |- ( 1st ` ( H ` 2 ) ) = ( 1st ` ( G ` 1 ) ) |
| 241 | 239 240 | oveq12i | |- ( ( 2nd ` ( H ` 2 ) ) - ( 1st ` ( H ` 2 ) ) ) = ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) |
| 242 | 229 241 | eqtrdi | |- ( ph -> ( ( ( abs o. - ) o. H ) ` 2 ) = ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) ) |
| 243 | 227 242 | eqtrid | |- ( ph -> ( ( ( abs o. - ) o. H ) ` ( 2 x. 1 ) ) = ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) ) |
| 244 | 78 200 43 225 243 | seqp1d | |- ( ph -> ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` ( 2 x. 1 ) ) = ( ( ( 2nd ` ( F ` 1 ) ) - ( 1st ` ( F ` 1 ) ) ) + ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) ) ) |
| 245 | 199 244 | eqtrid | |- ( ph -> ( U ` ( 2 x. 1 ) ) = ( ( ( 2nd ` ( F ` 1 ) ) - ( 1st ` ( F ` 1 ) ) ) + ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) ) ) |
| 246 | 4 | fveq1i | |- ( S ` 1 ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` 1 ) |
| 247 | 107 | ovolfsval | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ 1 e. NN ) -> ( ( ( abs o. - ) o. F ) ` 1 ) = ( ( 2nd ` ( F ` 1 ) ) - ( 1st ` ( F ` 1 ) ) ) ) |
| 248 | 23 136 247 | sylancl | |- ( ph -> ( ( ( abs o. - ) o. F ) ` 1 ) = ( ( 2nd ` ( F ` 1 ) ) - ( 1st ` ( F ` 1 ) ) ) ) |
| 249 | 61 248 | seq1i | |- ( ph -> ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` 1 ) = ( ( 2nd ` ( F ` 1 ) ) - ( 1st ` ( F ` 1 ) ) ) ) |
| 250 | 246 249 | eqtrid | |- ( ph -> ( S ` 1 ) = ( ( 2nd ` ( F ` 1 ) ) - ( 1st ` ( F ` 1 ) ) ) ) |
| 251 | 5 | fveq1i | |- ( T ` 1 ) = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) |
| 252 | 117 | ovolfsval | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ 1 e. NN ) -> ( ( ( abs o. - ) o. G ) ` 1 ) = ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) ) |
| 253 | 15 136 252 | sylancl | |- ( ph -> ( ( ( abs o. - ) o. G ) ` 1 ) = ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) ) |
| 254 | 61 253 | seq1i | |- ( ph -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` 1 ) = ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) ) |
| 255 | 251 254 | eqtrid | |- ( ph -> ( T ` 1 ) = ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) ) |
| 256 | 250 255 | oveq12d | |- ( ph -> ( ( S ` 1 ) + ( T ` 1 ) ) = ( ( ( 2nd ` ( F ` 1 ) ) - ( 1st ` ( F ` 1 ) ) ) + ( ( 2nd ` ( G ` 1 ) ) - ( 1st ` ( G ` 1 ) ) ) ) ) |
| 257 | 245 256 | eqtr4d | |- ( ph -> ( U ` ( 2 x. 1 ) ) = ( ( S ` 1 ) + ( T ` 1 ) ) ) |
| 258 | oveq1 | |- ( ( U ` ( 2 x. k ) ) = ( ( S ` k ) + ( T ` k ) ) -> ( ( U ` ( 2 x. k ) ) + ( ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) + ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) ) = ( ( ( S ` k ) + ( T ` k ) ) + ( ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) + ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) ) ) |
|
| 259 | 43 | oveq2i | |- ( ( 2 x. k ) + ( 2 x. 1 ) ) = ( ( 2 x. k ) + ( 1 + 1 ) ) |
| 260 | 2cnd | |- ( ( ph /\ k e. NN ) -> 2 e. CC ) |
|
| 261 | 47 | recnd | |- ( ( ph /\ k e. NN ) -> k e. CC ) |
| 262 | 1cnd | |- ( ( ph /\ k e. NN ) -> 1 e. CC ) |
|
| 263 | 260 261 262 | adddid | |- ( ( ph /\ k e. NN ) -> ( 2 x. ( k + 1 ) ) = ( ( 2 x. k ) + ( 2 x. 1 ) ) ) |
| 264 | nnmulcl | |- ( ( 2 e. NN /\ k e. NN ) -> ( 2 x. k ) e. NN ) |
|
| 265 | 36 264 | mpan | |- ( k e. NN -> ( 2 x. k ) e. NN ) |
| 266 | 265 | adantl | |- ( ( ph /\ k e. NN ) -> ( 2 x. k ) e. NN ) |
| 267 | 266 | nncnd | |- ( ( ph /\ k e. NN ) -> ( 2 x. k ) e. CC ) |
| 268 | 267 262 262 | addassd | |- ( ( ph /\ k e. NN ) -> ( ( ( 2 x. k ) + 1 ) + 1 ) = ( ( 2 x. k ) + ( 1 + 1 ) ) ) |
| 269 | 259 263 268 | 3eqtr4a | |- ( ( ph /\ k e. NN ) -> ( 2 x. ( k + 1 ) ) = ( ( ( 2 x. k ) + 1 ) + 1 ) ) |
| 270 | 269 | fveq2d | |- ( ( ph /\ k e. NN ) -> ( U ` ( 2 x. ( k + 1 ) ) ) = ( U ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) ) |
| 271 | 6 | fveq1i | |- ( U ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) = ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) |
| 272 | 266 | peano2nnd | |- ( ( ph /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) e. NN ) |
| 273 | 272 78 | eleqtrdi | |- ( ( ph /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) e. ( ZZ>= ` 1 ) ) |
| 274 | seqp1 | |- ( ( ( 2 x. k ) + 1 ) e. ( ZZ>= ` 1 ) -> ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) = ( ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` ( ( 2 x. k ) + 1 ) ) + ( ( ( abs o. - ) o. H ) ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) ) ) |
|
| 275 | 273 274 | syl | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) = ( ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` ( ( 2 x. k ) + 1 ) ) + ( ( ( abs o. - ) o. H ) ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) ) ) |
| 276 | 266 78 | eleqtrdi | |- ( ( ph /\ k e. NN ) -> ( 2 x. k ) e. ( ZZ>= ` 1 ) ) |
| 277 | seqp1 | |- ( ( 2 x. k ) e. ( ZZ>= ` 1 ) -> ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` ( ( 2 x. k ) + 1 ) ) = ( ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` ( 2 x. k ) ) + ( ( ( abs o. - ) o. H ) ` ( ( 2 x. k ) + 1 ) ) ) ) |
|
| 278 | 276 277 | syl | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` ( ( 2 x. k ) + 1 ) ) = ( ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` ( 2 x. k ) ) + ( ( ( abs o. - ) o. H ) ` ( ( 2 x. k ) + 1 ) ) ) ) |
| 279 | 6 | fveq1i | |- ( U ` ( 2 x. k ) ) = ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` ( 2 x. k ) ) |
| 280 | 279 | a1i | |- ( ( ph /\ k e. NN ) -> ( U ` ( 2 x. k ) ) = ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` ( 2 x. k ) ) ) |
| 281 | oveq1 | |- ( n = ( ( 2 x. k ) + 1 ) -> ( n / 2 ) = ( ( ( 2 x. k ) + 1 ) / 2 ) ) |
|
| 282 | 281 | eleq1d | |- ( n = ( ( 2 x. k ) + 1 ) -> ( ( n / 2 ) e. NN <-> ( ( ( 2 x. k ) + 1 ) / 2 ) e. NN ) ) |
| 283 | 281 | fveq2d | |- ( n = ( ( 2 x. k ) + 1 ) -> ( G ` ( n / 2 ) ) = ( G ` ( ( ( 2 x. k ) + 1 ) / 2 ) ) ) |
| 284 | oveq1 | |- ( n = ( ( 2 x. k ) + 1 ) -> ( n + 1 ) = ( ( ( 2 x. k ) + 1 ) + 1 ) ) |
|
| 285 | 284 | fvoveq1d | |- ( n = ( ( 2 x. k ) + 1 ) -> ( F ` ( ( n + 1 ) / 2 ) ) = ( F ` ( ( ( ( 2 x. k ) + 1 ) + 1 ) / 2 ) ) ) |
| 286 | 282 283 285 | ifbieq12d | |- ( n = ( ( 2 x. k ) + 1 ) -> if ( ( n / 2 ) e. NN , ( G ` ( n / 2 ) ) , ( F ` ( ( n + 1 ) / 2 ) ) ) = if ( ( ( ( 2 x. k ) + 1 ) / 2 ) e. NN , ( G ` ( ( ( 2 x. k ) + 1 ) / 2 ) ) , ( F ` ( ( ( ( 2 x. k ) + 1 ) + 1 ) / 2 ) ) ) ) |
| 287 | fvex | |- ( G ` ( ( ( 2 x. k ) + 1 ) / 2 ) ) e. _V |
|
| 288 | fvex | |- ( F ` ( ( ( ( 2 x. k ) + 1 ) + 1 ) / 2 ) ) e. _V |
|
| 289 | 287 288 | ifex | |- if ( ( ( ( 2 x. k ) + 1 ) / 2 ) e. NN , ( G ` ( ( ( 2 x. k ) + 1 ) / 2 ) ) , ( F ` ( ( ( ( 2 x. k ) + 1 ) + 1 ) / 2 ) ) ) e. _V |
| 290 | 286 13 289 | fvmpt | |- ( ( ( 2 x. k ) + 1 ) e. NN -> ( H ` ( ( 2 x. k ) + 1 ) ) = if ( ( ( ( 2 x. k ) + 1 ) / 2 ) e. NN , ( G ` ( ( ( 2 x. k ) + 1 ) / 2 ) ) , ( F ` ( ( ( ( 2 x. k ) + 1 ) + 1 ) / 2 ) ) ) ) |
| 291 | 272 290 | syl | |- ( ( ph /\ k e. NN ) -> ( H ` ( ( 2 x. k ) + 1 ) ) = if ( ( ( ( 2 x. k ) + 1 ) / 2 ) e. NN , ( G ` ( ( ( 2 x. k ) + 1 ) / 2 ) ) , ( F ` ( ( ( ( 2 x. k ) + 1 ) + 1 ) / 2 ) ) ) ) |
| 292 | 2ne0 | |- 2 =/= 0 |
|
| 293 | 292 | a1i | |- ( ( ph /\ k e. NN ) -> 2 =/= 0 ) |
| 294 | 261 260 293 | divcan3d | |- ( ( ph /\ k e. NN ) -> ( ( 2 x. k ) / 2 ) = k ) |
| 295 | 294 77 | eqeltrd | |- ( ( ph /\ k e. NN ) -> ( ( 2 x. k ) / 2 ) e. NN ) |
| 296 | nneo | |- ( ( 2 x. k ) e. NN -> ( ( ( 2 x. k ) / 2 ) e. NN <-> -. ( ( ( 2 x. k ) + 1 ) / 2 ) e. NN ) ) |
|
| 297 | 266 296 | syl | |- ( ( ph /\ k e. NN ) -> ( ( ( 2 x. k ) / 2 ) e. NN <-> -. ( ( ( 2 x. k ) + 1 ) / 2 ) e. NN ) ) |
| 298 | 295 297 | mpbid | |- ( ( ph /\ k e. NN ) -> -. ( ( ( 2 x. k ) + 1 ) / 2 ) e. NN ) |
| 299 | 298 | iffalsed | |- ( ( ph /\ k e. NN ) -> if ( ( ( ( 2 x. k ) + 1 ) / 2 ) e. NN , ( G ` ( ( ( 2 x. k ) + 1 ) / 2 ) ) , ( F ` ( ( ( ( 2 x. k ) + 1 ) + 1 ) / 2 ) ) ) = ( F ` ( ( ( ( 2 x. k ) + 1 ) + 1 ) / 2 ) ) ) |
| 300 | 269 | oveq1d | |- ( ( ph /\ k e. NN ) -> ( ( 2 x. ( k + 1 ) ) / 2 ) = ( ( ( ( 2 x. k ) + 1 ) + 1 ) / 2 ) ) |
| 301 | 38 | nncnd | |- ( ( ph /\ k e. NN ) -> ( k + 1 ) e. CC ) |
| 302 | 2cn | |- 2 e. CC |
|
| 303 | divcan3 | |- ( ( ( k + 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. ( k + 1 ) ) / 2 ) = ( k + 1 ) ) |
|
| 304 | 302 292 303 | mp3an23 | |- ( ( k + 1 ) e. CC -> ( ( 2 x. ( k + 1 ) ) / 2 ) = ( k + 1 ) ) |
| 305 | 301 304 | syl | |- ( ( ph /\ k e. NN ) -> ( ( 2 x. ( k + 1 ) ) / 2 ) = ( k + 1 ) ) |
| 306 | 300 305 | eqtr3d | |- ( ( ph /\ k e. NN ) -> ( ( ( ( 2 x. k ) + 1 ) + 1 ) / 2 ) = ( k + 1 ) ) |
| 307 | 306 | fveq2d | |- ( ( ph /\ k e. NN ) -> ( F ` ( ( ( ( 2 x. k ) + 1 ) + 1 ) / 2 ) ) = ( F ` ( k + 1 ) ) ) |
| 308 | 291 299 307 | 3eqtrd | |- ( ( ph /\ k e. NN ) -> ( H ` ( ( 2 x. k ) + 1 ) ) = ( F ` ( k + 1 ) ) ) |
| 309 | 308 | fveq2d | |- ( ( ph /\ k e. NN ) -> ( 2nd ` ( H ` ( ( 2 x. k ) + 1 ) ) ) = ( 2nd ` ( F ` ( k + 1 ) ) ) ) |
| 310 | 308 | fveq2d | |- ( ( ph /\ k e. NN ) -> ( 1st ` ( H ` ( ( 2 x. k ) + 1 ) ) ) = ( 1st ` ( F ` ( k + 1 ) ) ) ) |
| 311 | 309 310 | oveq12d | |- ( ( ph /\ k e. NN ) -> ( ( 2nd ` ( H ` ( ( 2 x. k ) + 1 ) ) ) - ( 1st ` ( H ` ( ( 2 x. k ) + 1 ) ) ) ) = ( ( 2nd ` ( F ` ( k + 1 ) ) ) - ( 1st ` ( F ` ( k + 1 ) ) ) ) ) |
| 312 | 29 | ovolfsval | |- ( ( H : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( ( 2 x. k ) + 1 ) e. NN ) -> ( ( ( abs o. - ) o. H ) ` ( ( 2 x. k ) + 1 ) ) = ( ( 2nd ` ( H ` ( ( 2 x. k ) + 1 ) ) ) - ( 1st ` ( H ` ( ( 2 x. k ) + 1 ) ) ) ) ) |
| 313 | 28 272 312 | syl2an2r | |- ( ( ph /\ k e. NN ) -> ( ( ( abs o. - ) o. H ) ` ( ( 2 x. k ) + 1 ) ) = ( ( 2nd ` ( H ` ( ( 2 x. k ) + 1 ) ) ) - ( 1st ` ( H ` ( ( 2 x. k ) + 1 ) ) ) ) ) |
| 314 | 107 | ovolfsval | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( k + 1 ) e. NN ) -> ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) = ( ( 2nd ` ( F ` ( k + 1 ) ) ) - ( 1st ` ( F ` ( k + 1 ) ) ) ) ) |
| 315 | 23 37 314 | syl2an | |- ( ( ph /\ k e. NN ) -> ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) = ( ( 2nd ` ( F ` ( k + 1 ) ) ) - ( 1st ` ( F ` ( k + 1 ) ) ) ) ) |
| 316 | 311 313 315 | 3eqtr4rd | |- ( ( ph /\ k e. NN ) -> ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) = ( ( ( abs o. - ) o. H ) ` ( ( 2 x. k ) + 1 ) ) ) |
| 317 | 280 316 | oveq12d | |- ( ( ph /\ k e. NN ) -> ( ( U ` ( 2 x. k ) ) + ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) ) = ( ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` ( 2 x. k ) ) + ( ( ( abs o. - ) o. H ) ` ( ( 2 x. k ) + 1 ) ) ) ) |
| 318 | 278 317 | eqtr4d | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` ( ( 2 x. k ) + 1 ) ) = ( ( U ` ( 2 x. k ) ) + ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) ) ) |
| 319 | 269 | fveq2d | |- ( ( ph /\ k e. NN ) -> ( H ` ( 2 x. ( k + 1 ) ) ) = ( H ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) ) |
| 320 | 272 | peano2nnd | |- ( ( ph /\ k e. NN ) -> ( ( ( 2 x. k ) + 1 ) + 1 ) e. NN ) |
| 321 | 269 320 | eqeltrd | |- ( ( ph /\ k e. NN ) -> ( 2 x. ( k + 1 ) ) e. NN ) |
| 322 | oveq1 | |- ( n = ( 2 x. ( k + 1 ) ) -> ( n / 2 ) = ( ( 2 x. ( k + 1 ) ) / 2 ) ) |
|
| 323 | 322 | eleq1d | |- ( n = ( 2 x. ( k + 1 ) ) -> ( ( n / 2 ) e. NN <-> ( ( 2 x. ( k + 1 ) ) / 2 ) e. NN ) ) |
| 324 | 322 | fveq2d | |- ( n = ( 2 x. ( k + 1 ) ) -> ( G ` ( n / 2 ) ) = ( G ` ( ( 2 x. ( k + 1 ) ) / 2 ) ) ) |
| 325 | oveq1 | |- ( n = ( 2 x. ( k + 1 ) ) -> ( n + 1 ) = ( ( 2 x. ( k + 1 ) ) + 1 ) ) |
|
| 326 | 325 | fvoveq1d | |- ( n = ( 2 x. ( k + 1 ) ) -> ( F ` ( ( n + 1 ) / 2 ) ) = ( F ` ( ( ( 2 x. ( k + 1 ) ) + 1 ) / 2 ) ) ) |
| 327 | 323 324 326 | ifbieq12d | |- ( n = ( 2 x. ( k + 1 ) ) -> if ( ( n / 2 ) e. NN , ( G ` ( n / 2 ) ) , ( F ` ( ( n + 1 ) / 2 ) ) ) = if ( ( ( 2 x. ( k + 1 ) ) / 2 ) e. NN , ( G ` ( ( 2 x. ( k + 1 ) ) / 2 ) ) , ( F ` ( ( ( 2 x. ( k + 1 ) ) + 1 ) / 2 ) ) ) ) |
| 328 | fvex | |- ( G ` ( ( 2 x. ( k + 1 ) ) / 2 ) ) e. _V |
|
| 329 | fvex | |- ( F ` ( ( ( 2 x. ( k + 1 ) ) + 1 ) / 2 ) ) e. _V |
|
| 330 | 328 329 | ifex | |- if ( ( ( 2 x. ( k + 1 ) ) / 2 ) e. NN , ( G ` ( ( 2 x. ( k + 1 ) ) / 2 ) ) , ( F ` ( ( ( 2 x. ( k + 1 ) ) + 1 ) / 2 ) ) ) e. _V |
| 331 | 327 13 330 | fvmpt | |- ( ( 2 x. ( k + 1 ) ) e. NN -> ( H ` ( 2 x. ( k + 1 ) ) ) = if ( ( ( 2 x. ( k + 1 ) ) / 2 ) e. NN , ( G ` ( ( 2 x. ( k + 1 ) ) / 2 ) ) , ( F ` ( ( ( 2 x. ( k + 1 ) ) + 1 ) / 2 ) ) ) ) |
| 332 | 321 331 | syl | |- ( ( ph /\ k e. NN ) -> ( H ` ( 2 x. ( k + 1 ) ) ) = if ( ( ( 2 x. ( k + 1 ) ) / 2 ) e. NN , ( G ` ( ( 2 x. ( k + 1 ) ) / 2 ) ) , ( F ` ( ( ( 2 x. ( k + 1 ) ) + 1 ) / 2 ) ) ) ) |
| 333 | 305 38 | eqeltrd | |- ( ( ph /\ k e. NN ) -> ( ( 2 x. ( k + 1 ) ) / 2 ) e. NN ) |
| 334 | 333 | iftrued | |- ( ( ph /\ k e. NN ) -> if ( ( ( 2 x. ( k + 1 ) ) / 2 ) e. NN , ( G ` ( ( 2 x. ( k + 1 ) ) / 2 ) ) , ( F ` ( ( ( 2 x. ( k + 1 ) ) + 1 ) / 2 ) ) ) = ( G ` ( ( 2 x. ( k + 1 ) ) / 2 ) ) ) |
| 335 | 305 | fveq2d | |- ( ( ph /\ k e. NN ) -> ( G ` ( ( 2 x. ( k + 1 ) ) / 2 ) ) = ( G ` ( k + 1 ) ) ) |
| 336 | 332 334 335 | 3eqtrd | |- ( ( ph /\ k e. NN ) -> ( H ` ( 2 x. ( k + 1 ) ) ) = ( G ` ( k + 1 ) ) ) |
| 337 | 319 336 | eqtr3d | |- ( ( ph /\ k e. NN ) -> ( H ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) = ( G ` ( k + 1 ) ) ) |
| 338 | 337 | fveq2d | |- ( ( ph /\ k e. NN ) -> ( 2nd ` ( H ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) ) = ( 2nd ` ( G ` ( k + 1 ) ) ) ) |
| 339 | 337 | fveq2d | |- ( ( ph /\ k e. NN ) -> ( 1st ` ( H ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) ) = ( 1st ` ( G ` ( k + 1 ) ) ) ) |
| 340 | 338 339 | oveq12d | |- ( ( ph /\ k e. NN ) -> ( ( 2nd ` ( H ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) ) - ( 1st ` ( H ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) ) ) = ( ( 2nd ` ( G ` ( k + 1 ) ) ) - ( 1st ` ( G ` ( k + 1 ) ) ) ) ) |
| 341 | 29 | ovolfsval | |- ( ( H : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( ( ( 2 x. k ) + 1 ) + 1 ) e. NN ) -> ( ( ( abs o. - ) o. H ) ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) = ( ( 2nd ` ( H ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) ) - ( 1st ` ( H ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) ) ) ) |
| 342 | 28 320 341 | syl2an2r | |- ( ( ph /\ k e. NN ) -> ( ( ( abs o. - ) o. H ) ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) = ( ( 2nd ` ( H ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) ) - ( 1st ` ( H ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) ) ) ) |
| 343 | 117 | ovolfsval | |- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( k + 1 ) e. NN ) -> ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) = ( ( 2nd ` ( G ` ( k + 1 ) ) ) - ( 1st ` ( G ` ( k + 1 ) ) ) ) ) |
| 344 | 15 37 343 | syl2an | |- ( ( ph /\ k e. NN ) -> ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) = ( ( 2nd ` ( G ` ( k + 1 ) ) ) - ( 1st ` ( G ` ( k + 1 ) ) ) ) ) |
| 345 | 340 342 344 | 3eqtr4d | |- ( ( ph /\ k e. NN ) -> ( ( ( abs o. - ) o. H ) ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) = ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) |
| 346 | 318 345 | oveq12d | |- ( ( ph /\ k e. NN ) -> ( ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` ( ( 2 x. k ) + 1 ) ) + ( ( ( abs o. - ) o. H ) ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) ) = ( ( ( U ` ( 2 x. k ) ) + ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) ) + ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) ) |
| 347 | 275 346 | eqtrd | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) = ( ( ( U ` ( 2 x. k ) ) + ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) ) + ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) ) |
| 348 | 271 347 | eqtrid | |- ( ( ph /\ k e. NN ) -> ( U ` ( ( ( 2 x. k ) + 1 ) + 1 ) ) = ( ( ( U ` ( 2 x. k ) ) + ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) ) + ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) ) |
| 349 | ffvelcdm | |- ( ( U : NN --> ( 0 [,) +oo ) /\ ( 2 x. k ) e. NN ) -> ( U ` ( 2 x. k ) ) e. ( 0 [,) +oo ) ) |
|
| 350 | 31 265 349 | syl2an | |- ( ( ph /\ k e. NN ) -> ( U ` ( 2 x. k ) ) e. ( 0 [,) +oo ) ) |
| 351 | 32 350 | sselid | |- ( ( ph /\ k e. NN ) -> ( U ` ( 2 x. k ) ) e. RR ) |
| 352 | 351 | recnd | |- ( ( ph /\ k e. NN ) -> ( U ` ( 2 x. k ) ) e. CC ) |
| 353 | 107 | ovolfsf | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( abs o. - ) o. F ) : NN --> ( 0 [,) +oo ) ) |
| 354 | 23 353 | syl | |- ( ph -> ( ( abs o. - ) o. F ) : NN --> ( 0 [,) +oo ) ) |
| 355 | ffvelcdm | |- ( ( ( ( abs o. - ) o. F ) : NN --> ( 0 [,) +oo ) /\ ( k + 1 ) e. NN ) -> ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) e. ( 0 [,) +oo ) ) |
|
| 356 | 354 37 355 | syl2an | |- ( ( ph /\ k e. NN ) -> ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) e. ( 0 [,) +oo ) ) |
| 357 | 32 356 | sselid | |- ( ( ph /\ k e. NN ) -> ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) e. RR ) |
| 358 | 357 | recnd | |- ( ( ph /\ k e. NN ) -> ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) e. CC ) |
| 359 | 117 | ovolfsf | |- ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( abs o. - ) o. G ) : NN --> ( 0 [,) +oo ) ) |
| 360 | 15 359 | syl | |- ( ph -> ( ( abs o. - ) o. G ) : NN --> ( 0 [,) +oo ) ) |
| 361 | ffvelcdm | |- ( ( ( ( abs o. - ) o. G ) : NN --> ( 0 [,) +oo ) /\ ( k + 1 ) e. NN ) -> ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) e. ( 0 [,) +oo ) ) |
|
| 362 | 360 37 361 | syl2an | |- ( ( ph /\ k e. NN ) -> ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) e. ( 0 [,) +oo ) ) |
| 363 | 32 362 | sselid | |- ( ( ph /\ k e. NN ) -> ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) e. RR ) |
| 364 | 363 | recnd | |- ( ( ph /\ k e. NN ) -> ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) e. CC ) |
| 365 | 352 358 364 | addassd | |- ( ( ph /\ k e. NN ) -> ( ( ( U ` ( 2 x. k ) ) + ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) ) + ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) = ( ( U ` ( 2 x. k ) ) + ( ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) + ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) ) ) |
| 366 | 270 348 365 | 3eqtrd | |- ( ( ph /\ k e. NN ) -> ( U ` ( 2 x. ( k + 1 ) ) ) = ( ( U ` ( 2 x. k ) ) + ( ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) + ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) ) ) |
| 367 | seqp1 | |- ( k e. ( ZZ>= ` 1 ) -> ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` ( k + 1 ) ) = ( ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` k ) + ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) ) ) |
|
| 368 | 79 367 | syl | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` ( k + 1 ) ) = ( ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` k ) + ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) ) ) |
| 369 | 4 | fveq1i | |- ( S ` ( k + 1 ) ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` ( k + 1 ) ) |
| 370 | 4 | fveq1i | |- ( S ` k ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` k ) |
| 371 | 370 | oveq1i | |- ( ( S ` k ) + ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) ) = ( ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` k ) + ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) ) |
| 372 | 368 369 371 | 3eqtr4g | |- ( ( ph /\ k e. NN ) -> ( S ` ( k + 1 ) ) = ( ( S ` k ) + ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) ) ) |
| 373 | seqp1 | |- ( k e. ( ZZ>= ` 1 ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` ( k + 1 ) ) = ( ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) + ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) ) |
|
| 374 | 79 373 | syl | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` ( k + 1 ) ) = ( ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) + ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) ) |
| 375 | 5 | fveq1i | |- ( T ` ( k + 1 ) ) = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` ( k + 1 ) ) |
| 376 | 5 | fveq1i | |- ( T ` k ) = ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) |
| 377 | 376 | oveq1i | |- ( ( T ` k ) + ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) = ( ( seq 1 ( + , ( ( abs o. - ) o. G ) ) ` k ) + ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) |
| 378 | 374 375 377 | 3eqtr4g | |- ( ( ph /\ k e. NN ) -> ( T ` ( k + 1 ) ) = ( ( T ` k ) + ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) ) |
| 379 | 372 378 | oveq12d | |- ( ( ph /\ k e. NN ) -> ( ( S ` ( k + 1 ) ) + ( T ` ( k + 1 ) ) ) = ( ( ( S ` k ) + ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) ) + ( ( T ` k ) + ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) ) ) |
| 380 | 109 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( S ` k ) e. ( 0 [,) +oo ) ) |
| 381 | 32 380 | sselid | |- ( ( ph /\ k e. NN ) -> ( S ` k ) e. RR ) |
| 382 | 381 | recnd | |- ( ( ph /\ k e. NN ) -> ( S ` k ) e. CC ) |
| 383 | 119 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( T ` k ) e. ( 0 [,) +oo ) ) |
| 384 | 32 383 | sselid | |- ( ( ph /\ k e. NN ) -> ( T ` k ) e. RR ) |
| 385 | 384 | recnd | |- ( ( ph /\ k e. NN ) -> ( T ` k ) e. CC ) |
| 386 | 382 358 385 364 | add4d | |- ( ( ph /\ k e. NN ) -> ( ( ( S ` k ) + ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) ) + ( ( T ` k ) + ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) ) = ( ( ( S ` k ) + ( T ` k ) ) + ( ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) + ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) ) ) |
| 387 | 379 386 | eqtrd | |- ( ( ph /\ k e. NN ) -> ( ( S ` ( k + 1 ) ) + ( T ` ( k + 1 ) ) ) = ( ( ( S ` k ) + ( T ` k ) ) + ( ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) + ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) ) ) |
| 388 | 366 387 | eqeq12d | |- ( ( ph /\ k e. NN ) -> ( ( U ` ( 2 x. ( k + 1 ) ) ) = ( ( S ` ( k + 1 ) ) + ( T ` ( k + 1 ) ) ) <-> ( ( U ` ( 2 x. k ) ) + ( ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) + ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) ) = ( ( ( S ` k ) + ( T ` k ) ) + ( ( ( ( abs o. - ) o. F ) ` ( k + 1 ) ) + ( ( ( abs o. - ) o. G ) ` ( k + 1 ) ) ) ) ) ) |
| 389 | 258 388 | imbitrrid | |- ( ( ph /\ k e. NN ) -> ( ( U ` ( 2 x. k ) ) = ( ( S ` k ) + ( T ` k ) ) -> ( U ` ( 2 x. ( k + 1 ) ) ) = ( ( S ` ( k + 1 ) ) + ( T ` ( k + 1 ) ) ) ) ) |
| 390 | 389 | expcom | |- ( k e. NN -> ( ph -> ( ( U ` ( 2 x. k ) ) = ( ( S ` k ) + ( T ` k ) ) -> ( U ` ( 2 x. ( k + 1 ) ) ) = ( ( S ` ( k + 1 ) ) + ( T ` ( k + 1 ) ) ) ) ) ) |
| 391 | 390 | a2d | |- ( k e. NN -> ( ( ph -> ( U ` ( 2 x. k ) ) = ( ( S ` k ) + ( T ` k ) ) ) -> ( ph -> ( U ` ( 2 x. ( k + 1 ) ) ) = ( ( S ` ( k + 1 ) ) + ( T ` ( k + 1 ) ) ) ) ) ) |
| 392 | 177 184 191 198 257 391 | nnind | |- ( ( |_ ` ( ( k + 1 ) / 2 ) ) e. NN -> ( ph -> ( U ` ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) = ( ( S ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) + ( T ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) ) ) |
| 393 | 392 | impcom | |- ( ( ph /\ ( |_ ` ( ( k + 1 ) / 2 ) ) e. NN ) -> ( U ` ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) = ( ( S ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) + ( T ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) ) |
| 394 | 66 393 | syldan | |- ( ( ph /\ k e. NN ) -> ( U ` ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) = ( ( S ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) + ( T ` ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) ) |
| 395 | 71 | adantr | |- ( ( ph /\ k e. NN ) -> ( vol* ` A ) e. RR ) |
| 396 | 395 | recnd | |- ( ( ph /\ k e. NN ) -> ( vol* ` A ) e. CC ) |
| 397 | 74 | adantr | |- ( ( ph /\ k e. NN ) -> C e. RR ) |
| 398 | 397 | rehalfcld | |- ( ( ph /\ k e. NN ) -> ( C / 2 ) e. RR ) |
| 399 | 398 | recnd | |- ( ( ph /\ k e. NN ) -> ( C / 2 ) e. CC ) |
| 400 | 72 | adantr | |- ( ( ph /\ k e. NN ) -> ( vol* ` B ) e. RR ) |
| 401 | 400 | recnd | |- ( ( ph /\ k e. NN ) -> ( vol* ` B ) e. CC ) |
| 402 | 396 399 401 399 | add4d | |- ( ( ph /\ k e. NN ) -> ( ( ( vol* ` A ) + ( C / 2 ) ) + ( ( vol* ` B ) + ( C / 2 ) ) ) = ( ( ( vol* ` A ) + ( vol* ` B ) ) + ( ( C / 2 ) + ( C / 2 ) ) ) ) |
| 403 | 397 | recnd | |- ( ( ph /\ k e. NN ) -> C e. CC ) |
| 404 | 403 | 2halvesd | |- ( ( ph /\ k e. NN ) -> ( ( C / 2 ) + ( C / 2 ) ) = C ) |
| 405 | 404 | oveq2d | |- ( ( ph /\ k e. NN ) -> ( ( ( vol* ` A ) + ( vol* ` B ) ) + ( ( C / 2 ) + ( C / 2 ) ) ) = ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) |
| 406 | 402 405 | eqtr2d | |- ( ( ph /\ k e. NN ) -> ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) = ( ( ( vol* ` A ) + ( C / 2 ) ) + ( ( vol* ` B ) + ( C / 2 ) ) ) ) |
| 407 | 170 394 406 | 3brtr4d | |- ( ( ph /\ k e. NN ) -> ( U ` ( 2 x. ( |_ ` ( ( k + 1 ) / 2 ) ) ) ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) |
| 408 | 35 70 76 106 407 | letrd | |- ( ( ph /\ k e. NN ) -> ( U ` k ) <_ ( ( ( vol* ` A ) + ( vol* ` B ) ) + C ) ) |