This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 30-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sermono.1 | ⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| sermono.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) | ||
| sermono.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | ||
| sermono.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) | ||
| Assertion | sermono | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ≤ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sermono.1 | ⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | sermono.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 3 | sermono.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | |
| 4 | sermono.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) | |
| 5 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝐾 ... 𝑁 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 6 | uztrn | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 7 | 5 1 6 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... 𝑁 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 8 | elfzuz3 | ⊢ ( 𝑘 ∈ ( 𝐾 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑘 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑘 ) ) |
| 10 | fzss2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑘 ) → ( 𝑀 ... 𝑘 ) ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... 𝑁 ) ) → ( 𝑀 ... 𝑘 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 12 | 11 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑘 ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
| 13 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 14 | 12 13 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑘 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 15 | readdcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) | |
| 16 | 15 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... 𝑁 ) ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
| 17 | 7 14 16 | seqcl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... 𝑁 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ∈ ℝ ) |
| 18 | fveq2 | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) | |
| 19 | 18 | breq2d | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ 0 ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 20 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → ∀ 𝑥 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 22 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) | |
| 23 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 24 | eluzelz | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐾 ∈ ℤ ) | |
| 25 | 23 24 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → 𝐾 ∈ ℤ ) |
| 26 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 27 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝑁 ∈ ℤ ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ℤ ) |
| 29 | peano2zm | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) | |
| 30 | 28 29 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → ( 𝑁 − 1 ) ∈ ℤ ) |
| 31 | elfzelz | ⊢ ( 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ℤ ) | |
| 32 | 31 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → 𝑘 ∈ ℤ ) |
| 33 | 1zzd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → 1 ∈ ℤ ) | |
| 34 | fzaddel | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ↔ ( 𝑘 + 1 ) ∈ ( ( 𝐾 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) ) | |
| 35 | 25 30 32 33 34 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → ( 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ↔ ( 𝑘 + 1 ) ∈ ( ( 𝐾 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) ) |
| 36 | 22 35 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ( ( 𝐾 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 37 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 38 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 39 | npcan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
| 40 | 37 38 39 | sylancl | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 41 | 28 40 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 42 | 41 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐾 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) = ( ( 𝐾 + 1 ) ... 𝑁 ) ) |
| 43 | 36 42 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) |
| 44 | 19 21 43 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → 0 ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 45 | fzelp1 | ⊢ ( 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ( 𝐾 ... ( ( 𝑁 − 1 ) + 1 ) ) ) | |
| 46 | 45 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → 𝑘 ∈ ( 𝐾 ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 47 | 41 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → ( 𝐾 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 𝐾 ... 𝑁 ) ) |
| 48 | 46 47 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → 𝑘 ∈ ( 𝐾 ... 𝑁 ) ) |
| 49 | 48 17 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ∈ ℝ ) |
| 50 | 18 | eleq1d | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) ) |
| 51 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 52 | 51 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → ∀ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 53 | fzss1 | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 54 | 23 53 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → ( 𝐾 ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 55 | fzp1elp1 | ⊢ ( 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) → ( 𝑘 + 1 ) ∈ ( 𝐾 ... ( ( 𝑁 − 1 ) + 1 ) ) ) | |
| 56 | 55 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ( 𝐾 ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 57 | 56 47 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) |
| 58 | 54 57 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 59 | 50 52 58 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 60 | 49 59 | addge01d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → ( 0 ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ≤ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) + ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 61 | 44 60 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ≤ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) + ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 62 | 48 7 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 63 | seqp1 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) + ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) | |
| 64 | 62 63 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) + ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 65 | 61 64 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐾 ... ( 𝑁 − 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ≤ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) |
| 66 | 2 17 65 | monoord | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ≤ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |