This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a nonempty set of reals is greater than minus infinity. (Contributed by NM, 2-Feb-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrgtmnf | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → -∞ < sup ( 𝐴 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supxrbnd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) | |
| 2 | 1 | 3expia | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) < +∞ → sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) ) |
| 3 | 2 | con3d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( ¬ sup ( 𝐴 , ℝ* , < ) ∈ ℝ → ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
| 4 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 5 | sstr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ℝ ⊆ ℝ* ) → 𝐴 ⊆ ℝ* ) | |
| 6 | 4 5 | mpan2 | ⊢ ( 𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ* ) |
| 7 | supxrcl | ⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐴 ⊆ ℝ → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
| 10 | nltpnft | ⊢ ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ sup ( 𝐴 , ℝ* , < ) < +∞ ) ) |
| 12 | 3 11 | sylibrd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( ¬ sup ( 𝐴 , ℝ* , < ) ∈ ℝ → sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
| 13 | 12 | orrd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ∨ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
| 14 | mnfltxr | ⊢ ( ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ ∨ sup ( 𝐴 , ℝ* , < ) = +∞ ) → -∞ < sup ( 𝐴 , ℝ* , < ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → -∞ < sup ( 𝐴 , ℝ* , < ) ) |