This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition to both sides of 'less than or equal to'. (Contributed by NM, 18-Oct-1999) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leadd1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 + 𝐶 ) ≤ ( 𝐵 + 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltadd1 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ ( 𝐵 + 𝐶 ) < ( 𝐴 + 𝐶 ) ) ) | |
| 2 | 1 | 3com12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ ( 𝐵 + 𝐶 ) < ( 𝐴 + 𝐶 ) ) ) |
| 3 | 2 | notbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ¬ 𝐵 < 𝐴 ↔ ¬ ( 𝐵 + 𝐶 ) < ( 𝐴 + 𝐶 ) ) ) |
| 4 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 5 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 6 | 4 5 | lenltd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
| 7 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) | |
| 8 | 4 7 | readdcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + 𝐶 ) ∈ ℝ ) |
| 9 | 5 7 | readdcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 + 𝐶 ) ∈ ℝ ) |
| 10 | 8 9 | lenltd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 + 𝐶 ) ≤ ( 𝐵 + 𝐶 ) ↔ ¬ ( 𝐵 + 𝐶 ) < ( 𝐴 + 𝐶 ) ) ) |
| 11 | 3 6 10 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 + 𝐶 ) ≤ ( 𝐵 + 𝐶 ) ) ) |