This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: L'Hôpital's Rule for limits from the left. If F and G are differentiable real functions on ( A , B ) , and F and G both approach 0 at B , and G ( x ) and G ' ( x ) are not zero on ( A , B ) , and the limit of F ' ( x ) / G ' ( x ) at B is C , then the limit F ( x ) / G ( x ) at B also exists and equals C . (Contributed by Mario Carneiro, 29-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lhop2.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| lhop2.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| lhop2.l | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| lhop2.f | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | ||
| lhop2.g | ⊢ ( 𝜑 → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | ||
| lhop2.if | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | ||
| lhop2.ig | ⊢ ( 𝜑 → dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) | ||
| lhop2.f0 | ⊢ ( 𝜑 → 0 ∈ ( 𝐹 limℂ 𝐵 ) ) | ||
| lhop2.g0 | ⊢ ( 𝜑 → 0 ∈ ( 𝐺 limℂ 𝐵 ) ) | ||
| lhop2.gn0 | ⊢ ( 𝜑 → ¬ 0 ∈ ran 𝐺 ) | ||
| lhop2.gd0 | ⊢ ( 𝜑 → ¬ 0 ∈ ran ( ℝ D 𝐺 ) ) | ||
| lhop2.c | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑧 ) / ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) ) limℂ 𝐵 ) ) | ||
| Assertion | lhop2 | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑧 ) / ( 𝐺 ‘ 𝑧 ) ) ) limℂ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhop2.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 2 | lhop2.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | lhop2.l | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 4 | lhop2.f | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | |
| 5 | lhop2.g | ⊢ ( 𝜑 → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) | |
| 6 | lhop2.if | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | |
| 7 | lhop2.ig | ⊢ ( 𝜑 → dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) | |
| 8 | lhop2.f0 | ⊢ ( 𝜑 → 0 ∈ ( 𝐹 limℂ 𝐵 ) ) | |
| 9 | lhop2.g0 | ⊢ ( 𝜑 → 0 ∈ ( 𝐺 limℂ 𝐵 ) ) | |
| 10 | lhop2.gn0 | ⊢ ( 𝜑 → ¬ 0 ∈ ran 𝐺 ) | |
| 11 | lhop2.gd0 | ⊢ ( 𝜑 → ¬ 0 ∈ ran ( ℝ D 𝐺 ) ) | |
| 12 | lhop2.c | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑧 ) / ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) ) limℂ 𝐵 ) ) | |
| 13 | qssre | ⊢ ℚ ⊆ ℝ | |
| 14 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 15 | qbtwnxr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ∃ 𝑎 ∈ ℚ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) | |
| 16 | 1 14 3 15 | syl3anc | ⊢ ( 𝜑 → ∃ 𝑎 ∈ ℚ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) |
| 17 | ssrexv | ⊢ ( ℚ ⊆ ℝ → ( ∃ 𝑎 ∈ ℚ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) → ∃ 𝑎 ∈ ℝ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) | |
| 18 | 13 16 17 | mpsyl | ⊢ ( 𝜑 → ∃ 𝑎 ∈ ℝ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) |
| 19 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) → 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) | |
| 20 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝑎 ∈ ℝ ) | |
| 21 | 20 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) → 𝑎 ∈ ℝ ) |
| 22 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 23 | elioore | ⊢ ( 𝑧 ∈ ( 𝑎 (,) 𝐵 ) → 𝑧 ∈ ℝ ) | |
| 24 | 23 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) → 𝑧 ∈ ℝ ) |
| 25 | iooneg | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ↔ - 𝑧 ∈ ( - 𝐵 (,) - 𝑎 ) ) ) | |
| 26 | 21 22 24 25 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) → ( 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ↔ - 𝑧 ∈ ( - 𝐵 (,) - 𝑎 ) ) ) |
| 27 | 19 26 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) → - 𝑧 ∈ ( - 𝐵 (,) - 𝑎 ) ) |
| 28 | 27 | adantrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ ( 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ∧ - 𝑧 ≠ - 𝐵 ) ) → - 𝑧 ∈ ( - 𝐵 (,) - 𝑎 ) ) |
| 29 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 30 | elioore | ⊢ ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) → 𝑥 ∈ ℝ ) | |
| 31 | 30 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → 𝑥 ∈ ℝ ) |
| 32 | 31 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → 𝑥 ∈ ℂ ) |
| 33 | 32 | negnegd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → - - 𝑥 = 𝑥 ) |
| 34 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) | |
| 35 | 33 34 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → - - 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) |
| 36 | 20 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → 𝑎 ∈ ℝ ) |
| 37 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → 𝐵 ∈ ℝ ) |
| 38 | 31 | renegcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → - 𝑥 ∈ ℝ ) |
| 39 | iooneg | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ - 𝑥 ∈ ℝ ) → ( - 𝑥 ∈ ( 𝑎 (,) 𝐵 ) ↔ - - 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) ) | |
| 40 | 36 37 38 39 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( - 𝑥 ∈ ( 𝑎 (,) 𝐵 ) ↔ - - 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) ) |
| 41 | 35 40 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → - 𝑥 ∈ ( 𝑎 (,) 𝐵 ) ) |
| 42 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐴 ∈ ℝ* ) |
| 43 | 20 | rexrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝑎 ∈ ℝ* ) |
| 44 | simprrl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐴 < 𝑎 ) | |
| 45 | 42 43 44 | xrltled | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐴 ≤ 𝑎 ) |
| 46 | iooss1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑎 ) → ( 𝑎 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 47 | 42 45 46 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝑎 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 48 | 47 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ - 𝑥 ∈ ( 𝑎 (,) 𝐵 ) ) → - 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 49 | 41 48 | syldan | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → - 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 50 | 29 49 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( 𝐹 ‘ - 𝑥 ) ∈ ℝ ) |
| 51 | 50 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( 𝐹 ‘ - 𝑥 ) ∈ ℂ ) |
| 52 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 53 | 52 49 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( 𝐺 ‘ - 𝑥 ) ∈ ℝ ) |
| 54 | 53 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( 𝐺 ‘ - 𝑥 ) ∈ ℂ ) |
| 55 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ¬ 0 ∈ ran 𝐺 ) |
| 56 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 57 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 58 | fss | ⊢ ( ( 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | |
| 59 | 56 57 58 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 60 | 59 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → 𝐺 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 61 | 60 | ffnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → 𝐺 Fn ( 𝐴 (,) 𝐵 ) ) |
| 62 | fnfvelrn | ⊢ ( ( 𝐺 Fn ( 𝐴 (,) 𝐵 ) ∧ - 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ‘ - 𝑥 ) ∈ ran 𝐺 ) | |
| 63 | 61 49 62 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( 𝐺 ‘ - 𝑥 ) ∈ ran 𝐺 ) |
| 64 | eleq1 | ⊢ ( ( 𝐺 ‘ - 𝑥 ) = 0 → ( ( 𝐺 ‘ - 𝑥 ) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺 ) ) | |
| 65 | 63 64 | syl5ibcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ( 𝐺 ‘ - 𝑥 ) = 0 → 0 ∈ ran 𝐺 ) ) |
| 66 | 65 | necon3bd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ¬ 0 ∈ ran 𝐺 → ( 𝐺 ‘ - 𝑥 ) ≠ 0 ) ) |
| 67 | 55 66 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( 𝐺 ‘ - 𝑥 ) ≠ 0 ) |
| 68 | 51 54 67 | divcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ( 𝐹 ‘ - 𝑥 ) / ( 𝐺 ‘ - 𝑥 ) ) ∈ ℂ ) |
| 69 | limcresi | ⊢ ( ( 𝑧 ∈ ℝ ↦ - 𝑧 ) limℂ 𝐵 ) ⊆ ( ( ( 𝑧 ∈ ℝ ↦ - 𝑧 ) ↾ ( 𝑎 (,) 𝐵 ) ) limℂ 𝐵 ) | |
| 70 | ioossre | ⊢ ( 𝑎 (,) 𝐵 ) ⊆ ℝ | |
| 71 | resmpt | ⊢ ( ( 𝑎 (,) 𝐵 ) ⊆ ℝ → ( ( 𝑧 ∈ ℝ ↦ - 𝑧 ) ↾ ( 𝑎 (,) 𝐵 ) ) = ( 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ↦ - 𝑧 ) ) | |
| 72 | 70 71 | ax-mp | ⊢ ( ( 𝑧 ∈ ℝ ↦ - 𝑧 ) ↾ ( 𝑎 (,) 𝐵 ) ) = ( 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ↦ - 𝑧 ) |
| 73 | 72 | oveq1i | ⊢ ( ( ( 𝑧 ∈ ℝ ↦ - 𝑧 ) ↾ ( 𝑎 (,) 𝐵 ) ) limℂ 𝐵 ) = ( ( 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ↦ - 𝑧 ) limℂ 𝐵 ) |
| 74 | 69 73 | sseqtri | ⊢ ( ( 𝑧 ∈ ℝ ↦ - 𝑧 ) limℂ 𝐵 ) ⊆ ( ( 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ↦ - 𝑧 ) limℂ 𝐵 ) |
| 75 | eqid | ⊢ ( 𝑧 ∈ ℝ ↦ - 𝑧 ) = ( 𝑧 ∈ ℝ ↦ - 𝑧 ) | |
| 76 | 75 | negcncf | ⊢ ( ℝ ⊆ ℂ → ( 𝑧 ∈ ℝ ↦ - 𝑧 ) ∈ ( ℝ –cn→ ℂ ) ) |
| 77 | 57 76 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝑧 ∈ ℝ ↦ - 𝑧 ) ∈ ( ℝ –cn→ ℂ ) ) |
| 78 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐵 ∈ ℝ ) |
| 79 | negeq | ⊢ ( 𝑧 = 𝐵 → - 𝑧 = - 𝐵 ) | |
| 80 | 77 78 79 | cnmptlimc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → - 𝐵 ∈ ( ( 𝑧 ∈ ℝ ↦ - 𝑧 ) limℂ 𝐵 ) ) |
| 81 | 74 80 | sselid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → - 𝐵 ∈ ( ( 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ↦ - 𝑧 ) limℂ 𝐵 ) ) |
| 82 | 78 | renegcld | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → - 𝐵 ∈ ℝ ) |
| 83 | 20 | renegcld | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → - 𝑎 ∈ ℝ ) |
| 84 | 83 | rexrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → - 𝑎 ∈ ℝ* ) |
| 85 | simprrr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝑎 < 𝐵 ) | |
| 86 | 20 78 | ltnegd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝑎 < 𝐵 ↔ - 𝐵 < - 𝑎 ) ) |
| 87 | 85 86 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → - 𝐵 < - 𝑎 ) |
| 88 | 50 | fmpttd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) : ( - 𝐵 (,) - 𝑎 ) ⟶ ℝ ) |
| 89 | 53 | fmpttd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) : ( - 𝐵 (,) - 𝑎 ) ⟶ ℝ ) |
| 90 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 91 | 90 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ℝ ∈ { ℝ , ℂ } ) |
| 92 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 93 | 92 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → - 1 ∈ ℂ ) |
| 94 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 95 | 94 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 96 | 95 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 97 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ V ) | |
| 98 | 1cnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → 1 ∈ ℂ ) | |
| 99 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) | |
| 100 | 99 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
| 101 | 1cnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ℝ ) → 1 ∈ ℂ ) | |
| 102 | 91 | dvmptid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ℝ D ( 𝑥 ∈ ℝ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℝ ↦ 1 ) ) |
| 103 | ioossre | ⊢ ( - 𝐵 (,) - 𝑎 ) ⊆ ℝ | |
| 104 | 103 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( - 𝐵 (,) - 𝑎 ) ⊆ ℝ ) |
| 105 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 106 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 107 | iooretop | ⊢ ( - 𝐵 (,) - 𝑎 ) ∈ ( topGen ‘ ran (,) ) | |
| 108 | 107 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( - 𝐵 (,) - 𝑎 ) ∈ ( topGen ‘ ran (,) ) ) |
| 109 | 91 100 101 102 104 105 106 108 | dvmptres | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ 𝑥 ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ 1 ) ) |
| 110 | 91 32 98 109 | dvmptneg | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - 𝑥 ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - 1 ) ) |
| 111 | 94 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐹 = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
| 112 | 111 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ℝ D 𝐹 ) = ( ℝ D ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 113 | dvf | ⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ | |
| 114 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
| 115 | 114 | feq2d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
| 116 | 113 115 | mpbii | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 117 | 116 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ℝ D 𝐹 ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
| 118 | 112 117 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ℝ D ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
| 119 | fveq2 | ⊢ ( 𝑦 = - 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ - 𝑥 ) ) | |
| 120 | fveq2 | ⊢ ( 𝑦 = - 𝑥 → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ) | |
| 121 | 91 91 49 93 96 97 110 118 119 120 | dvmptco | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) · - 1 ) ) ) |
| 122 | 116 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 123 | 122 49 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ∈ ℂ ) |
| 124 | 123 93 | mulcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) · - 1 ) = ( - 1 · ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ) ) |
| 125 | 123 | mulm1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( - 1 · ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ) = - ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ) |
| 126 | 124 125 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) · - 1 ) = - ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ) |
| 127 | 126 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) · - 1 ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ) ) |
| 128 | 121 127 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ) ) |
| 129 | 128 | dmeqd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → dom ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) = dom ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ) ) |
| 130 | negex | ⊢ - ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ∈ V | |
| 131 | eqid | ⊢ ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ) | |
| 132 | 130 131 | dmmpti | ⊢ dom ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ) = ( - 𝐵 (,) - 𝑎 ) |
| 133 | 129 132 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → dom ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) = ( - 𝐵 (,) - 𝑎 ) ) |
| 134 | 56 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ℝ ) |
| 135 | 134 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ℂ ) |
| 136 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑦 ) ∈ V ) | |
| 137 | 56 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐺 = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐺 ‘ 𝑦 ) ) ) |
| 138 | 137 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ℝ D 𝐺 ) = ( ℝ D ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 139 | dvf | ⊢ ( ℝ D 𝐺 ) : dom ( ℝ D 𝐺 ) ⟶ ℂ | |
| 140 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) |
| 141 | 140 | feq2d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( ℝ D 𝐺 ) : dom ( ℝ D 𝐺 ) ⟶ ℂ ↔ ( ℝ D 𝐺 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
| 142 | 139 141 | mpbii | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ℝ D 𝐺 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 143 | 142 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ℝ D 𝐺 ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐺 ) ‘ 𝑦 ) ) ) |
| 144 | 138 143 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ℝ D ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐺 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐺 ) ‘ 𝑦 ) ) ) |
| 145 | fveq2 | ⊢ ( 𝑦 = - 𝑥 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ - 𝑥 ) ) | |
| 146 | fveq2 | ⊢ ( 𝑦 = - 𝑥 → ( ( ℝ D 𝐺 ) ‘ 𝑦 ) = ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) | |
| 147 | 91 91 49 93 135 136 110 144 145 146 | dvmptco | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) · - 1 ) ) ) |
| 148 | 142 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ℝ D 𝐺 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 149 | 148 49 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ∈ ℂ ) |
| 150 | 149 93 | mulcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) · - 1 ) = ( - 1 · ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) ) |
| 151 | 149 | mulm1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( - 1 · ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) = - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) |
| 152 | 150 151 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) · - 1 ) = - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) |
| 153 | 152 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) · - 1 ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) ) |
| 154 | 147 153 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) ) |
| 155 | 154 | dmeqd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → dom ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) = dom ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) ) |
| 156 | negex | ⊢ - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ∈ V | |
| 157 | eqid | ⊢ ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) | |
| 158 | 156 157 | dmmpti | ⊢ dom ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) = ( - 𝐵 (,) - 𝑎 ) |
| 159 | 155 158 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → dom ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) = ( - 𝐵 (,) - 𝑎 ) ) |
| 160 | 49 | adantrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ∧ - 𝑥 ≠ 𝐵 ) ) → - 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 161 | limcresi | ⊢ ( ( 𝑥 ∈ ℝ ↦ - 𝑥 ) limℂ - 𝐵 ) ⊆ ( ( ( 𝑥 ∈ ℝ ↦ - 𝑥 ) ↾ ( - 𝐵 (,) - 𝑎 ) ) limℂ - 𝐵 ) | |
| 162 | resmpt | ⊢ ( ( - 𝐵 (,) - 𝑎 ) ⊆ ℝ → ( ( 𝑥 ∈ ℝ ↦ - 𝑥 ) ↾ ( - 𝐵 (,) - 𝑎 ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - 𝑥 ) ) | |
| 163 | 103 162 | ax-mp | ⊢ ( ( 𝑥 ∈ ℝ ↦ - 𝑥 ) ↾ ( - 𝐵 (,) - 𝑎 ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - 𝑥 ) |
| 164 | 163 | oveq1i | ⊢ ( ( ( 𝑥 ∈ ℝ ↦ - 𝑥 ) ↾ ( - 𝐵 (,) - 𝑎 ) ) limℂ - 𝐵 ) = ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - 𝑥 ) limℂ - 𝐵 ) |
| 165 | 161 164 | sseqtri | ⊢ ( ( 𝑥 ∈ ℝ ↦ - 𝑥 ) limℂ - 𝐵 ) ⊆ ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - 𝑥 ) limℂ - 𝐵 ) |
| 166 | 78 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐵 ∈ ℂ ) |
| 167 | 166 | negnegd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → - - 𝐵 = 𝐵 ) |
| 168 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ - 𝑥 ) = ( 𝑥 ∈ ℝ ↦ - 𝑥 ) | |
| 169 | 168 | negcncf | ⊢ ( ℝ ⊆ ℂ → ( 𝑥 ∈ ℝ ↦ - 𝑥 ) ∈ ( ℝ –cn→ ℂ ) ) |
| 170 | 57 169 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝑥 ∈ ℝ ↦ - 𝑥 ) ∈ ( ℝ –cn→ ℂ ) ) |
| 171 | negeq | ⊢ ( 𝑥 = - 𝐵 → - 𝑥 = - - 𝐵 ) | |
| 172 | 170 82 171 | cnmptlimc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → - - 𝐵 ∈ ( ( 𝑥 ∈ ℝ ↦ - 𝑥 ) limℂ - 𝐵 ) ) |
| 173 | 167 172 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐵 ∈ ( ( 𝑥 ∈ ℝ ↦ - 𝑥 ) limℂ - 𝐵 ) ) |
| 174 | 165 173 | sselid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐵 ∈ ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - 𝑥 ) limℂ - 𝐵 ) ) |
| 175 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 0 ∈ ( 𝐹 limℂ 𝐵 ) ) |
| 176 | 111 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝐹 limℂ 𝐵 ) = ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑦 ) ) limℂ 𝐵 ) ) |
| 177 | 175 176 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 0 ∈ ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑦 ) ) limℂ 𝐵 ) ) |
| 178 | eliooord | ⊢ ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) → ( - 𝐵 < 𝑥 ∧ 𝑥 < - 𝑎 ) ) | |
| 179 | 178 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( - 𝐵 < 𝑥 ∧ 𝑥 < - 𝑎 ) ) |
| 180 | 179 | simpld | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → - 𝐵 < 𝑥 ) |
| 181 | 37 31 180 | ltnegcon1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → - 𝑥 < 𝐵 ) |
| 182 | 38 181 | ltned | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → - 𝑥 ≠ 𝐵 ) |
| 183 | 182 | neneqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ¬ - 𝑥 = 𝐵 ) |
| 184 | 183 | pm2.21d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( - 𝑥 = 𝐵 → ( 𝐹 ‘ - 𝑥 ) = 0 ) ) |
| 185 | 184 | impr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ∧ - 𝑥 = 𝐵 ) ) → ( 𝐹 ‘ - 𝑥 ) = 0 ) |
| 186 | 160 96 174 177 119 185 | limcco | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 0 ∈ ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) limℂ - 𝐵 ) ) |
| 187 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 0 ∈ ( 𝐺 limℂ 𝐵 ) ) |
| 188 | 137 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝐺 limℂ 𝐵 ) = ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐺 ‘ 𝑦 ) ) limℂ 𝐵 ) ) |
| 189 | 187 188 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 0 ∈ ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐺 ‘ 𝑦 ) ) limℂ 𝐵 ) ) |
| 190 | 183 | pm2.21d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( - 𝑥 = 𝐵 → ( 𝐺 ‘ - 𝑥 ) = 0 ) ) |
| 191 | 190 | impr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ∧ - 𝑥 = 𝐵 ) ) → ( 𝐺 ‘ - 𝑥 ) = 0 ) |
| 192 | 160 135 174 189 145 191 | limcco | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 0 ∈ ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) limℂ - 𝐵 ) ) |
| 193 | 63 | fmpttd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) : ( - 𝐵 (,) - 𝑎 ) ⟶ ran 𝐺 ) |
| 194 | 193 | frnd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ran ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ⊆ ran 𝐺 ) |
| 195 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ¬ 0 ∈ ran 𝐺 ) |
| 196 | 194 195 | ssneldd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ¬ 0 ∈ ran ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) |
| 197 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ¬ 0 ∈ ran ( ℝ D 𝐺 ) ) |
| 198 | 154 | rneqd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ran ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) = ran ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) ) |
| 199 | 198 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 0 ∈ ran ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) ↔ 0 ∈ ran ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) ) ) |
| 200 | 157 156 | elrnmpti | ⊢ ( 0 ∈ ran ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) ↔ ∃ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) 0 = - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) |
| 201 | eqcom | ⊢ ( 0 = - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ↔ - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) = 0 ) | |
| 202 | 149 | negeq0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) = 0 ↔ - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) = 0 ) ) |
| 203 | 148 | ffnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ℝ D 𝐺 ) Fn ( 𝐴 (,) 𝐵 ) ) |
| 204 | fnfvelrn | ⊢ ( ( ( ℝ D 𝐺 ) Fn ( 𝐴 (,) 𝐵 ) ∧ - 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ∈ ran ( ℝ D 𝐺 ) ) | |
| 205 | 203 49 204 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ∈ ran ( ℝ D 𝐺 ) ) |
| 206 | eleq1 | ⊢ ( ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) = 0 → ( ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ∈ ran ( ℝ D 𝐺 ) ↔ 0 ∈ ran ( ℝ D 𝐺 ) ) ) | |
| 207 | 205 206 | syl5ibcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) = 0 → 0 ∈ ran ( ℝ D 𝐺 ) ) ) |
| 208 | 202 207 | sylbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) = 0 → 0 ∈ ran ( ℝ D 𝐺 ) ) ) |
| 209 | 201 208 | biimtrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( 0 = - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) → 0 ∈ ran ( ℝ D 𝐺 ) ) ) |
| 210 | 209 | rexlimdva | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ∃ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) 0 = - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) → 0 ∈ ran ( ℝ D 𝐺 ) ) ) |
| 211 | 200 210 | biimtrid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 0 ∈ ran ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) → 0 ∈ ran ( ℝ D 𝐺 ) ) ) |
| 212 | 199 211 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 0 ∈ ran ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) → 0 ∈ ran ( ℝ D 𝐺 ) ) ) |
| 213 | 197 212 | mtod | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ¬ 0 ∈ ran ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) ) |
| 214 | 116 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ∈ ℂ ) |
| 215 | 142 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ∈ ℂ ) |
| 216 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 0 ∈ ran ( ℝ D 𝐺 ) ) |
| 217 | 142 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ℝ D 𝐺 ) Fn ( 𝐴 (,) 𝐵 ) ) |
| 218 | fnfvelrn | ⊢ ( ( ( ℝ D 𝐺 ) Fn ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ∈ ran ( ℝ D 𝐺 ) ) | |
| 219 | 217 218 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ∈ ran ( ℝ D 𝐺 ) ) |
| 220 | eleq1 | ⊢ ( ( ( ℝ D 𝐺 ) ‘ 𝑧 ) = 0 → ( ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ∈ ran ( ℝ D 𝐺 ) ↔ 0 ∈ ran ( ℝ D 𝐺 ) ) ) | |
| 221 | 219 220 | syl5ibcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D 𝐺 ) ‘ 𝑧 ) = 0 → 0 ∈ ran ( ℝ D 𝐺 ) ) ) |
| 222 | 221 | necon3bd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ¬ 0 ∈ ran ( ℝ D 𝐺 ) → ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ≠ 0 ) ) |
| 223 | 216 222 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ≠ 0 ) |
| 224 | 214 215 223 | divcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑧 ) / ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) ∈ ℂ ) |
| 225 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐶 ∈ ( ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ 𝑧 ) / ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) ) limℂ 𝐵 ) ) |
| 226 | fveq2 | ⊢ ( 𝑧 = - 𝑥 → ( ( ℝ D 𝐹 ) ‘ 𝑧 ) = ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ) | |
| 227 | fveq2 | ⊢ ( 𝑧 = - 𝑥 → ( ( ℝ D 𝐺 ) ‘ 𝑧 ) = ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) | |
| 228 | 226 227 | oveq12d | ⊢ ( 𝑧 = - 𝑥 → ( ( ( ℝ D 𝐹 ) ‘ 𝑧 ) / ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) = ( ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) / ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) ) |
| 229 | 183 | pm2.21d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( - 𝑥 = 𝐵 → ( ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) / ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) = 𝐶 ) ) |
| 230 | 229 | impr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ∧ - 𝑥 = 𝐵 ) ) → ( ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) / ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) = 𝐶 ) |
| 231 | 160 224 174 225 228 230 | limcco | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐶 ∈ ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) / ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) ) limℂ - 𝐵 ) ) |
| 232 | nfcv | ⊢ Ⅎ 𝑥 ℝ | |
| 233 | nfcv | ⊢ Ⅎ 𝑥 D | |
| 234 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) | |
| 235 | 232 233 234 | nfov | ⊢ Ⅎ 𝑥 ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) |
| 236 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 237 | 235 236 | nffv | ⊢ Ⅎ 𝑥 ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) ‘ 𝑦 ) |
| 238 | nfcv | ⊢ Ⅎ 𝑥 / | |
| 239 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) | |
| 240 | 232 233 239 | nfov | ⊢ Ⅎ 𝑥 ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) |
| 241 | 240 236 | nffv | ⊢ Ⅎ 𝑥 ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) ‘ 𝑦 ) |
| 242 | 237 238 241 | nfov | ⊢ Ⅎ 𝑥 ( ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) ‘ 𝑦 ) / ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) ‘ 𝑦 ) ) |
| 243 | nfcv | ⊢ Ⅎ 𝑦 ( ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) ‘ 𝑥 ) / ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) ‘ 𝑥 ) ) | |
| 244 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) ‘ 𝑦 ) = ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) ‘ 𝑥 ) ) | |
| 245 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) ‘ 𝑦 ) = ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) ‘ 𝑥 ) ) | |
| 246 | 244 245 | oveq12d | ⊢ ( 𝑦 = 𝑥 → ( ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) ‘ 𝑦 ) / ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) ‘ 𝑦 ) ) = ( ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) ‘ 𝑥 ) / ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) ‘ 𝑥 ) ) ) |
| 247 | 242 243 246 | cbvmpt | ⊢ ( 𝑦 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) ‘ 𝑦 ) / ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) ‘ 𝑥 ) / ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) ‘ 𝑥 ) ) ) |
| 248 | 128 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ) ‘ 𝑥 ) ) |
| 249 | 131 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ∧ - ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ∈ V ) → ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ) ‘ 𝑥 ) = - ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ) |
| 250 | 130 249 | mpan2 | ⊢ ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) → ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ) ‘ 𝑥 ) = - ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ) |
| 251 | 248 250 | sylan9eq | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) ‘ 𝑥 ) = - ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) ) |
| 252 | 154 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) ‘ 𝑥 ) ) |
| 253 | 157 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ∧ - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ∈ V ) → ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) ‘ 𝑥 ) = - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) |
| 254 | 156 253 | mpan2 | ⊢ ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) → ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) ‘ 𝑥 ) = - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) |
| 255 | 252 254 | sylan9eq | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) ‘ 𝑥 ) = - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) |
| 256 | 251 255 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) ‘ 𝑥 ) / ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) ‘ 𝑥 ) ) = ( - ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) / - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) ) |
| 257 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ¬ 0 ∈ ran ( ℝ D 𝐺 ) ) |
| 258 | 207 | necon3bd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ¬ 0 ∈ ran ( ℝ D 𝐺 ) → ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ≠ 0 ) ) |
| 259 | 257 258 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ≠ 0 ) |
| 260 | 123 149 259 | div2negd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( - ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) / - ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) = ( ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) / ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) ) |
| 261 | 256 260 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) ‘ 𝑥 ) / ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) ‘ 𝑥 ) ) = ( ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) / ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) ) |
| 262 | 261 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) ‘ 𝑥 ) / ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) / ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) ) ) |
| 263 | 247 262 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝑦 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) ‘ 𝑦 ) / ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) / ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) ) ) |
| 264 | 263 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( 𝑦 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) ‘ 𝑦 ) / ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) ‘ 𝑦 ) ) ) limℂ - 𝐵 ) = ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( ℝ D 𝐹 ) ‘ - 𝑥 ) / ( ( ℝ D 𝐺 ) ‘ - 𝑥 ) ) ) limℂ - 𝐵 ) ) |
| 265 | 231 264 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐶 ∈ ( ( 𝑦 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ) ‘ 𝑦 ) / ( ( ℝ D ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ) ‘ 𝑦 ) ) ) limℂ - 𝐵 ) ) |
| 266 | 82 84 87 88 89 133 159 186 192 196 213 265 | lhop1 | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐶 ∈ ( ( 𝑦 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ‘ 𝑦 ) / ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ‘ 𝑦 ) ) ) limℂ - 𝐵 ) ) |
| 267 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ‘ 𝑦 ) | |
| 268 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ‘ 𝑦 ) | |
| 269 | 267 238 268 | nfov | ⊢ Ⅎ 𝑥 ( ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ‘ 𝑦 ) / ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ‘ 𝑦 ) ) |
| 270 | nfcv | ⊢ Ⅎ 𝑦 ( ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ‘ 𝑥 ) / ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ‘ 𝑥 ) ) | |
| 271 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ‘ 𝑥 ) ) | |
| 272 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ‘ 𝑥 ) ) | |
| 273 | 271 272 | oveq12d | ⊢ ( 𝑦 = 𝑥 → ( ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ‘ 𝑦 ) / ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ‘ 𝑦 ) ) = ( ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ‘ 𝑥 ) / ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ‘ 𝑥 ) ) ) |
| 274 | 269 270 273 | cbvmpt | ⊢ ( 𝑦 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ‘ 𝑦 ) / ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ‘ 𝑥 ) / ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ‘ 𝑥 ) ) ) |
| 275 | fvex | ⊢ ( 𝐹 ‘ - 𝑥 ) ∈ V | |
| 276 | eqid | ⊢ ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) | |
| 277 | 276 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ∧ ( 𝐹 ‘ - 𝑥 ) ∈ V ) → ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ - 𝑥 ) ) |
| 278 | 34 275 277 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ - 𝑥 ) ) |
| 279 | fvex | ⊢ ( 𝐺 ‘ - 𝑥 ) ∈ V | |
| 280 | eqid | ⊢ ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) | |
| 281 | 280 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ∧ ( 𝐺 ‘ - 𝑥 ) ∈ V ) → ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ‘ 𝑥 ) = ( 𝐺 ‘ - 𝑥 ) ) |
| 282 | 34 279 281 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ‘ 𝑥 ) = ( 𝐺 ‘ - 𝑥 ) ) |
| 283 | 278 282 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ) → ( ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ‘ 𝑥 ) / ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ - 𝑥 ) / ( 𝐺 ‘ - 𝑥 ) ) ) |
| 284 | 283 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ‘ 𝑥 ) / ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( 𝐹 ‘ - 𝑥 ) / ( 𝐺 ‘ - 𝑥 ) ) ) ) |
| 285 | 274 284 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝑦 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ‘ 𝑦 ) / ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( 𝐹 ‘ - 𝑥 ) / ( 𝐺 ‘ - 𝑥 ) ) ) ) |
| 286 | 285 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( 𝑦 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐹 ‘ - 𝑥 ) ) ‘ 𝑦 ) / ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( 𝐺 ‘ - 𝑥 ) ) ‘ 𝑦 ) ) ) limℂ - 𝐵 ) = ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( 𝐹 ‘ - 𝑥 ) / ( 𝐺 ‘ - 𝑥 ) ) ) limℂ - 𝐵 ) ) |
| 287 | 266 286 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐶 ∈ ( ( 𝑥 ∈ ( - 𝐵 (,) - 𝑎 ) ↦ ( ( 𝐹 ‘ - 𝑥 ) / ( 𝐺 ‘ - 𝑥 ) ) ) limℂ - 𝐵 ) ) |
| 288 | negeq | ⊢ ( 𝑥 = - 𝑧 → - 𝑥 = - - 𝑧 ) | |
| 289 | 288 | fveq2d | ⊢ ( 𝑥 = - 𝑧 → ( 𝐹 ‘ - 𝑥 ) = ( 𝐹 ‘ - - 𝑧 ) ) |
| 290 | 288 | fveq2d | ⊢ ( 𝑥 = - 𝑧 → ( 𝐺 ‘ - 𝑥 ) = ( 𝐺 ‘ - - 𝑧 ) ) |
| 291 | 289 290 | oveq12d | ⊢ ( 𝑥 = - 𝑧 → ( ( 𝐹 ‘ - 𝑥 ) / ( 𝐺 ‘ - 𝑥 ) ) = ( ( 𝐹 ‘ - - 𝑧 ) / ( 𝐺 ‘ - - 𝑧 ) ) ) |
| 292 | 82 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) → - 𝐵 ∈ ℝ ) |
| 293 | eliooord | ⊢ ( 𝑧 ∈ ( 𝑎 (,) 𝐵 ) → ( 𝑎 < 𝑧 ∧ 𝑧 < 𝐵 ) ) | |
| 294 | 293 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) → ( 𝑎 < 𝑧 ∧ 𝑧 < 𝐵 ) ) |
| 295 | 294 | simprd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) → 𝑧 < 𝐵 ) |
| 296 | 24 22 | ltnegd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) → ( 𝑧 < 𝐵 ↔ - 𝐵 < - 𝑧 ) ) |
| 297 | 295 296 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) → - 𝐵 < - 𝑧 ) |
| 298 | 292 297 | gtned | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) → - 𝑧 ≠ - 𝐵 ) |
| 299 | 298 | neneqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) → ¬ - 𝑧 = - 𝐵 ) |
| 300 | 299 | pm2.21d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) → ( - 𝑧 = - 𝐵 → ( ( 𝐹 ‘ - - 𝑧 ) / ( 𝐺 ‘ - - 𝑧 ) ) = 𝐶 ) ) |
| 301 | 300 | impr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ ( 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ∧ - 𝑧 = - 𝐵 ) ) → ( ( 𝐹 ‘ - - 𝑧 ) / ( 𝐺 ‘ - - 𝑧 ) ) = 𝐶 ) |
| 302 | 28 68 81 287 291 301 | limcco | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐶 ∈ ( ( 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ - - 𝑧 ) / ( 𝐺 ‘ - - 𝑧 ) ) ) limℂ 𝐵 ) ) |
| 303 | 24 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) → 𝑧 ∈ ℂ ) |
| 304 | 303 | negnegd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) → - - 𝑧 = 𝑧 ) |
| 305 | 304 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) → ( 𝐹 ‘ - - 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 306 | 304 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) → ( 𝐺 ‘ - - 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 307 | 305 306 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ) → ( ( 𝐹 ‘ - - 𝑧 ) / ( 𝐺 ‘ - - 𝑧 ) ) = ( ( 𝐹 ‘ 𝑧 ) / ( 𝐺 ‘ 𝑧 ) ) ) |
| 308 | 307 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ - - 𝑧 ) / ( 𝐺 ‘ - - 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑧 ) / ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 309 | 308 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ - - 𝑧 ) / ( 𝐺 ‘ - - 𝑧 ) ) ) limℂ 𝐵 ) = ( ( 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑧 ) / ( 𝐺 ‘ 𝑧 ) ) ) limℂ 𝐵 ) ) |
| 310 | 47 | resmptd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑧 ) / ( 𝐺 ‘ 𝑧 ) ) ) ↾ ( 𝑎 (,) 𝐵 ) ) = ( 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑧 ) / ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 311 | 310 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑧 ) / ( 𝐺 ‘ 𝑧 ) ) ) ↾ ( 𝑎 (,) 𝐵 ) ) limℂ 𝐵 ) = ( ( 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑧 ) / ( 𝐺 ‘ 𝑧 ) ) ) limℂ 𝐵 ) ) |
| 312 | fss | ⊢ ( ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | |
| 313 | 94 57 312 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 314 | 313 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 315 | 59 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 316 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 0 ∈ ran 𝐺 ) |
| 317 | 56 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐺 Fn ( 𝐴 (,) 𝐵 ) ) |
| 318 | fnfvelrn | ⊢ ( ( 𝐺 Fn ( 𝐴 (,) 𝐵 ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ran 𝐺 ) | |
| 319 | 317 318 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ran 𝐺 ) |
| 320 | eleq1 | ⊢ ( ( 𝐺 ‘ 𝑧 ) = 0 → ( ( 𝐺 ‘ 𝑧 ) ∈ ran 𝐺 ↔ 0 ∈ ran 𝐺 ) ) | |
| 321 | 319 320 | syl5ibcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐺 ‘ 𝑧 ) = 0 → 0 ∈ ran 𝐺 ) ) |
| 322 | 321 | necon3bd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ¬ 0 ∈ ran 𝐺 → ( 𝐺 ‘ 𝑧 ) ≠ 0 ) ) |
| 323 | 316 322 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ‘ 𝑧 ) ≠ 0 ) |
| 324 | 314 315 323 | divcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐹 ‘ 𝑧 ) / ( 𝐺 ‘ 𝑧 ) ) ∈ ℂ ) |
| 325 | 324 | fmpttd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑧 ) / ( 𝐺 ‘ 𝑧 ) ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 326 | ioossre | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ | |
| 327 | 326 57 | sstri | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
| 328 | 327 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
| 329 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) | |
| 330 | ssun2 | ⊢ { 𝐵 } ⊆ ( ( 𝑎 (,) 𝐵 ) ∪ { 𝐵 } ) | |
| 331 | snssg | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 ∈ ( ( 𝑎 (,) 𝐵 ) ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( ( 𝑎 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) | |
| 332 | 78 331 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝐵 ∈ ( ( 𝑎 (,) 𝐵 ) ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( ( 𝑎 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) |
| 333 | 330 332 | mpbiri | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐵 ∈ ( ( 𝑎 (,) 𝐵 ) ∪ { 𝐵 } ) ) |
| 334 | 106 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 335 | 326 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 336 | 78 | snssd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → { 𝐵 } ⊆ ℝ ) |
| 337 | 335 336 | unssd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ⊆ ℝ ) |
| 338 | 337 57 | sstrdi | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ⊆ ℂ ) |
| 339 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) | |
| 340 | 334 338 339 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) |
| 341 | topontop | ⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ∈ Top ) | |
| 342 | 340 341 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ∈ Top ) |
| 343 | indi | ⊢ ( ( 𝑎 (,) +∞ ) ∩ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) = ( ( ( 𝑎 (,) +∞ ) ∩ ( 𝐴 (,) 𝐵 ) ) ∪ ( ( 𝑎 (,) +∞ ) ∩ { 𝐵 } ) ) | |
| 344 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 345 | 344 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → +∞ ∈ ℝ* ) |
| 346 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐵 ∈ ℝ* ) |
| 347 | iooin | ⊢ ( ( ( 𝑎 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) → ( ( 𝑎 (,) +∞ ) ∩ ( 𝐴 (,) 𝐵 ) ) = ( if ( 𝑎 ≤ 𝐴 , 𝐴 , 𝑎 ) (,) if ( +∞ ≤ 𝐵 , +∞ , 𝐵 ) ) ) | |
| 348 | 43 345 42 346 347 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( 𝑎 (,) +∞ ) ∩ ( 𝐴 (,) 𝐵 ) ) = ( if ( 𝑎 ≤ 𝐴 , 𝐴 , 𝑎 ) (,) if ( +∞ ≤ 𝐵 , +∞ , 𝐵 ) ) ) |
| 349 | xrltnle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑎 ∈ ℝ* ) → ( 𝐴 < 𝑎 ↔ ¬ 𝑎 ≤ 𝐴 ) ) | |
| 350 | 42 43 349 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝐴 < 𝑎 ↔ ¬ 𝑎 ≤ 𝐴 ) ) |
| 351 | 44 350 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ¬ 𝑎 ≤ 𝐴 ) |
| 352 | 351 | iffalsed | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → if ( 𝑎 ≤ 𝐴 , 𝐴 , 𝑎 ) = 𝑎 ) |
| 353 | 78 | ltpnfd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐵 < +∞ ) |
| 354 | xrltnle | ⊢ ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵 ) ) | |
| 355 | 346 344 354 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝐵 < +∞ ↔ ¬ +∞ ≤ 𝐵 ) ) |
| 356 | 353 355 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ¬ +∞ ≤ 𝐵 ) |
| 357 | 356 | iffalsed | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → if ( +∞ ≤ 𝐵 , +∞ , 𝐵 ) = 𝐵 ) |
| 358 | 352 357 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( if ( 𝑎 ≤ 𝐴 , 𝐴 , 𝑎 ) (,) if ( +∞ ≤ 𝐵 , +∞ , 𝐵 ) ) = ( 𝑎 (,) 𝐵 ) ) |
| 359 | 348 358 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( 𝑎 (,) +∞ ) ∩ ( 𝐴 (,) 𝐵 ) ) = ( 𝑎 (,) 𝐵 ) ) |
| 360 | elioopnf | ⊢ ( 𝑎 ∈ ℝ* → ( 𝐵 ∈ ( 𝑎 (,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑎 < 𝐵 ) ) ) | |
| 361 | 43 360 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝐵 ∈ ( 𝑎 (,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 𝑎 < 𝐵 ) ) ) |
| 362 | 78 85 361 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐵 ∈ ( 𝑎 (,) +∞ ) ) |
| 363 | 362 | snssd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → { 𝐵 } ⊆ ( 𝑎 (,) +∞ ) ) |
| 364 | sseqin2 | ⊢ ( { 𝐵 } ⊆ ( 𝑎 (,) +∞ ) ↔ ( ( 𝑎 (,) +∞ ) ∩ { 𝐵 } ) = { 𝐵 } ) | |
| 365 | 363 364 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( 𝑎 (,) +∞ ) ∩ { 𝐵 } ) = { 𝐵 } ) |
| 366 | 359 365 | uneq12d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( ( 𝑎 (,) +∞ ) ∩ ( 𝐴 (,) 𝐵 ) ) ∪ ( ( 𝑎 (,) +∞ ) ∩ { 𝐵 } ) ) = ( ( 𝑎 (,) 𝐵 ) ∪ { 𝐵 } ) ) |
| 367 | 343 366 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( 𝑎 (,) +∞ ) ∩ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) = ( ( 𝑎 (,) 𝐵 ) ∪ { 𝐵 } ) ) |
| 368 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 369 | reex | ⊢ ℝ ∈ V | |
| 370 | 369 | ssex | ⊢ ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ⊆ ℝ → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∈ V ) |
| 371 | 337 370 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∈ V ) |
| 372 | iooretop | ⊢ ( 𝑎 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) | |
| 373 | 372 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( 𝑎 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) ) |
| 374 | elrestr | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ∈ V ∧ ( 𝑎 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) ) → ( ( 𝑎 (,) +∞ ) ∩ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) | |
| 375 | 368 371 373 374 | mp3an2i | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( 𝑎 (,) +∞ ) ∩ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) |
| 376 | 367 375 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( 𝑎 (,) 𝐵 ) ∪ { 𝐵 } ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) |
| 377 | eqid | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) | |
| 378 | 106 377 | rerest | ⊢ ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ⊆ ℝ → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) = ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) |
| 379 | 337 378 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) = ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) |
| 380 | 376 379 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( 𝑎 (,) 𝐵 ) ∪ { 𝐵 } ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) |
| 381 | isopn3i | ⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ∈ Top ∧ ( ( 𝑎 (,) 𝐵 ) ∪ { 𝐵 } ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) ‘ ( ( 𝑎 (,) 𝐵 ) ∪ { 𝐵 } ) ) = ( ( 𝑎 (,) 𝐵 ) ∪ { 𝐵 } ) ) | |
| 382 | 342 380 381 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) ‘ ( ( 𝑎 (,) 𝐵 ) ∪ { 𝐵 } ) ) = ( ( 𝑎 (,) 𝐵 ) ∪ { 𝐵 } ) ) |
| 383 | 333 382 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐵 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) ‘ ( ( 𝑎 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) |
| 384 | 325 47 328 106 329 383 | limcres | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑧 ) / ( 𝐺 ‘ 𝑧 ) ) ) ↾ ( 𝑎 (,) 𝐵 ) ) limℂ 𝐵 ) = ( ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑧 ) / ( 𝐺 ‘ 𝑧 ) ) ) limℂ 𝐵 ) ) |
| 385 | 309 311 384 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → ( ( 𝑧 ∈ ( 𝑎 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ - - 𝑧 ) / ( 𝐺 ‘ - - 𝑧 ) ) ) limℂ 𝐵 ) = ( ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑧 ) / ( 𝐺 ‘ 𝑧 ) ) ) limℂ 𝐵 ) ) |
| 386 | 302 385 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ ∧ ( 𝐴 < 𝑎 ∧ 𝑎 < 𝐵 ) ) ) → 𝐶 ∈ ( ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑧 ) / ( 𝐺 ‘ 𝑧 ) ) ) limℂ 𝐵 ) ) |
| 387 | 18 386 | rexlimddv | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ 𝑧 ) / ( 𝐺 ‘ 𝑧 ) ) ) limℂ 𝐵 ) ) |