This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmptlimc.f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) ∈ ( 𝐴 –cn→ 𝐷 ) ) | |
| cnmptlimc.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| cnmptlimc.1 | ⊢ ( 𝑥 = 𝐵 → 𝑋 = 𝑌 ) | ||
| Assertion | cnmptlimc | ⊢ ( 𝜑 → 𝑌 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) limℂ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptlimc.f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) ∈ ( 𝐴 –cn→ 𝐷 ) ) | |
| 2 | cnmptlimc.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 3 | cnmptlimc.1 | ⊢ ( 𝑥 = 𝐵 → 𝑋 = 𝑌 ) | |
| 4 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) | |
| 5 | 3 | eleq1d | ⊢ ( 𝑥 = 𝐵 → ( 𝑋 ∈ 𝐷 ↔ 𝑌 ∈ 𝐷 ) ) |
| 6 | cncff | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) ∈ ( 𝐴 –cn→ 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) : 𝐴 ⟶ 𝐷 ) | |
| 7 | 1 6 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) : 𝐴 ⟶ 𝐷 ) |
| 8 | 4 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑋 ∈ 𝐷 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) : 𝐴 ⟶ 𝐷 ) |
| 9 | 7 8 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑋 ∈ 𝐷 ) |
| 10 | 5 9 2 | rspcdva | ⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) |
| 11 | 4 3 2 10 | fvmptd3 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) ‘ 𝐵 ) = 𝑌 ) |
| 12 | 1 2 | cnlimci | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) ‘ 𝐵 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) limℂ 𝐵 ) ) |
| 13 | 11 12 | eqeltrrd | ⊢ ( 𝜑 → 𝑌 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑋 ) limℂ 𝐵 ) ) |