This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rational numbers are dense in RR* : any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007) (Proof shortened by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qbtwnxr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
| 2 | elxr | ⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) | |
| 3 | qbtwnre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) | |
| 4 | 3 | 3expia | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 5 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → 𝐴 ∈ ℝ ) | |
| 6 | peano2re | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ( 𝐴 + 1 ) ∈ ℝ ) |
| 8 | ltp1 | ⊢ ( 𝐴 ∈ ℝ → 𝐴 < ( 𝐴 + 1 ) ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → 𝐴 < ( 𝐴 + 1 ) ) |
| 10 | qbtwnre | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ∧ 𝐴 < ( 𝐴 + 1 ) ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < ( 𝐴 + 1 ) ) ) | |
| 11 | 5 7 9 10 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < ( 𝐴 + 1 ) ) ) |
| 12 | qre | ⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℝ ) | |
| 13 | 12 | ltpnfd | ⊢ ( 𝑥 ∈ ℚ → 𝑥 < +∞ ) |
| 14 | 13 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) ∧ 𝑥 ∈ ℚ ) → 𝑥 < +∞ ) |
| 15 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) ∧ 𝑥 ∈ ℚ ) → 𝐵 = +∞ ) | |
| 16 | 14 15 | breqtrrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) ∧ 𝑥 ∈ ℚ ) → 𝑥 < 𝐵 ) |
| 17 | 16 | a1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) ∧ 𝑥 ∈ ℚ ) → ( 𝑥 < ( 𝐴 + 1 ) → 𝑥 < 𝐵 ) ) |
| 18 | 17 | anim2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) ∧ 𝑥 ∈ ℚ ) → ( ( 𝐴 < 𝑥 ∧ 𝑥 < ( 𝐴 + 1 ) ) → ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 19 | 18 | reximdva | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ( ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < ( 𝐴 + 1 ) ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 20 | 11 19 | mpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
| 21 | 20 | a1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 22 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 23 | breq2 | ⊢ ( 𝐵 = -∞ → ( 𝐴 < 𝐵 ↔ 𝐴 < -∞ ) ) | |
| 24 | 23 | adantl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 ↔ 𝐴 < -∞ ) ) |
| 25 | nltmnf | ⊢ ( 𝐴 ∈ ℝ* → ¬ 𝐴 < -∞ ) | |
| 26 | 25 | adantr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 = -∞ ) → ¬ 𝐴 < -∞ ) |
| 27 | 26 | pm2.21d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 = -∞ ) → ( 𝐴 < -∞ → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 28 | 24 27 | sylbid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 29 | 22 28 | sylan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 30 | 4 21 29 | 3jaodan | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 31 | 2 30 | sylan2b | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 32 | breq1 | ⊢ ( 𝐴 = +∞ → ( 𝐴 < 𝐵 ↔ +∞ < 𝐵 ) ) | |
| 33 | 32 | adantr | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ +∞ < 𝐵 ) ) |
| 34 | pnfnlt | ⊢ ( 𝐵 ∈ ℝ* → ¬ +∞ < 𝐵 ) | |
| 35 | 34 | adantl | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ¬ +∞ < 𝐵 ) |
| 36 | 35 | pm2.21d | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( +∞ < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 37 | 33 36 | sylbid | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 38 | peano2rem | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 − 1 ) ∈ ℝ ) | |
| 39 | 38 | adantl | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 − 1 ) ∈ ℝ ) |
| 40 | simpr | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 41 | ltm1 | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 − 1 ) < 𝐵 ) | |
| 42 | 41 | adantl | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 − 1 ) < 𝐵 ) |
| 43 | qbtwnre | ⊢ ( ( ( 𝐵 − 1 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐵 − 1 ) < 𝐵 ) → ∃ 𝑥 ∈ ℚ ( ( 𝐵 − 1 ) < 𝑥 ∧ 𝑥 < 𝐵 ) ) | |
| 44 | 39 40 42 43 | syl3anc | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ∃ 𝑥 ∈ ℚ ( ( 𝐵 − 1 ) < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
| 45 | simpll | ⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℚ ) → 𝐴 = -∞ ) | |
| 46 | 12 | adantl | ⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℚ ) → 𝑥 ∈ ℝ ) |
| 47 | 46 | mnfltd | ⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℚ ) → -∞ < 𝑥 ) |
| 48 | 45 47 | eqbrtrd | ⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℚ ) → 𝐴 < 𝑥 ) |
| 49 | 48 | a1d | ⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℚ ) → ( ( 𝐵 − 1 ) < 𝑥 → 𝐴 < 𝑥 ) ) |
| 50 | 49 | anim1d | ⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℚ ) → ( ( ( 𝐵 − 1 ) < 𝑥 ∧ 𝑥 < 𝐵 ) → ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 51 | 50 | reximdva | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ( ∃ 𝑥 ∈ ℚ ( ( 𝐵 − 1 ) < 𝑥 ∧ 𝑥 < 𝐵 ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 52 | 44 51 | mpd | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
| 53 | 52 | a1d | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 54 | 1re | ⊢ 1 ∈ ℝ | |
| 55 | mnflt | ⊢ ( 1 ∈ ℝ → -∞ < 1 ) | |
| 56 | 54 55 | ax-mp | ⊢ -∞ < 1 |
| 57 | breq1 | ⊢ ( 𝐴 = -∞ → ( 𝐴 < 1 ↔ -∞ < 1 ) ) | |
| 58 | 56 57 | mpbiri | ⊢ ( 𝐴 = -∞ → 𝐴 < 1 ) |
| 59 | ltpnf | ⊢ ( 1 ∈ ℝ → 1 < +∞ ) | |
| 60 | 54 59 | ax-mp | ⊢ 1 < +∞ |
| 61 | breq2 | ⊢ ( 𝐵 = +∞ → ( 1 < 𝐵 ↔ 1 < +∞ ) ) | |
| 62 | 60 61 | mpbiri | ⊢ ( 𝐵 = +∞ → 1 < 𝐵 ) |
| 63 | 1z | ⊢ 1 ∈ ℤ | |
| 64 | zq | ⊢ ( 1 ∈ ℤ → 1 ∈ ℚ ) | |
| 65 | 63 64 | ax-mp | ⊢ 1 ∈ ℚ |
| 66 | breq2 | ⊢ ( 𝑥 = 1 → ( 𝐴 < 𝑥 ↔ 𝐴 < 1 ) ) | |
| 67 | breq1 | ⊢ ( 𝑥 = 1 → ( 𝑥 < 𝐵 ↔ 1 < 𝐵 ) ) | |
| 68 | 66 67 | anbi12d | ⊢ ( 𝑥 = 1 → ( ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ↔ ( 𝐴 < 1 ∧ 1 < 𝐵 ) ) ) |
| 69 | 68 | rspcev | ⊢ ( ( 1 ∈ ℚ ∧ ( 𝐴 < 1 ∧ 1 < 𝐵 ) ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
| 70 | 65 69 | mpan | ⊢ ( ( 𝐴 < 1 ∧ 1 < 𝐵 ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
| 71 | 58 62 70 | syl2an | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = +∞ ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
| 72 | 71 | a1d | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = +∞ ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 73 | 3mix3 | ⊢ ( 𝐴 = -∞ → ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
| 74 | 73 1 | sylibr | ⊢ ( 𝐴 = -∞ → 𝐴 ∈ ℝ* ) |
| 75 | 74 28 | sylan | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 76 | 53 72 75 | 3jaodan | ⊢ ( ( 𝐴 = -∞ ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 77 | 2 76 | sylan2b | ⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 78 | 31 37 77 | 3jaoian | ⊢ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 79 | 1 78 | sylanb | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 80 | 79 | 3impia | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |