This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xrltled.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| xrltled.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
| xrltled.altb | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| Assertion | xrltled | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltled.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 2 | xrltled.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
| 3 | xrltled.altb | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 4 | xrltle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → 𝐴 ≤ 𝐵 ) ) | |
| 5 | 1 2 4 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 → 𝐴 ≤ 𝐵 ) ) |
| 6 | 3 5 | mpd | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |