This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of two limits. (Contributed by Mario Carneiro, 29-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcco.r | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑅 ≠ 𝐶 ) ) → 𝑅 ∈ 𝐵 ) | |
| limcco.s | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑆 ∈ ℂ ) | ||
| limcco.c | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) limℂ 𝑋 ) ) | ||
| limcco.d | ⊢ ( 𝜑 → 𝐷 ∈ ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) limℂ 𝐶 ) ) | ||
| limcco.1 | ⊢ ( 𝑦 = 𝑅 → 𝑆 = 𝑇 ) | ||
| limcco.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑅 = 𝐶 ) ) → 𝑇 = 𝐷 ) | ||
| Assertion | limcco | ⊢ ( 𝜑 → 𝐷 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) limℂ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcco.r | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑅 ≠ 𝐶 ) ) → 𝑅 ∈ 𝐵 ) | |
| 2 | limcco.s | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑆 ∈ ℂ ) | |
| 3 | limcco.c | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) limℂ 𝑋 ) ) | |
| 4 | limcco.d | ⊢ ( 𝜑 → 𝐷 ∈ ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) limℂ 𝐶 ) ) | |
| 5 | limcco.1 | ⊢ ( 𝑦 = 𝑅 → 𝑆 = 𝑇 ) | |
| 6 | limcco.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑅 = 𝐶 ) ) → 𝑇 = 𝐷 ) | |
| 7 | 1 | expr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅 ≠ 𝐶 → 𝑅 ∈ 𝐵 ) ) |
| 8 | 7 | necon1bd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑅 ∈ 𝐵 → 𝑅 = 𝐶 ) ) |
| 9 | limccl | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) limℂ 𝑋 ) ⊆ ℂ | |
| 10 | 9 3 | sselid | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 12 | elsn2g | ⊢ ( 𝐶 ∈ ℂ → ( 𝑅 ∈ { 𝐶 } ↔ 𝑅 = 𝐶 ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅 ∈ { 𝐶 } ↔ 𝑅 = 𝐶 ) ) |
| 14 | 8 13 | sylibrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑅 ∈ 𝐵 → 𝑅 ∈ { 𝐶 } ) ) |
| 15 | 14 | orrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅 ∈ 𝐵 ∨ 𝑅 ∈ { 𝐶 } ) ) |
| 16 | elun | ⊢ ( 𝑅 ∈ ( 𝐵 ∪ { 𝐶 } ) ↔ ( 𝑅 ∈ 𝐵 ∨ 𝑅 ∈ { 𝐶 } ) ) | |
| 17 | 15 16 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑅 ∈ ( 𝐵 ∪ { 𝐶 } ) ) |
| 18 | 17 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) : 𝐴 ⟶ ( 𝐵 ∪ { 𝐶 } ) ) |
| 19 | eqid | ⊢ ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) = ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) | |
| 20 | 19 2 | dmmptd | ⊢ ( 𝜑 → dom ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) = 𝐵 ) |
| 21 | limcrcl | ⊢ ( 𝐷 ∈ ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) limℂ 𝐶 ) → ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) : dom ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ⟶ ℂ ∧ dom ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ⊆ ℂ ∧ 𝐶 ∈ ℂ ) ) | |
| 22 | 4 21 | syl | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) : dom ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ⟶ ℂ ∧ dom ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ⊆ ℂ ∧ 𝐶 ∈ ℂ ) ) |
| 23 | 22 | simp2d | ⊢ ( 𝜑 → dom ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) ⊆ ℂ ) |
| 24 | 20 23 | eqsstrrd | ⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) |
| 25 | 10 | snssd | ⊢ ( 𝜑 → { 𝐶 } ⊆ ℂ ) |
| 26 | 24 25 | unssd | ⊢ ( 𝜑 → ( 𝐵 ∪ { 𝐶 } ) ⊆ ℂ ) |
| 27 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 28 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐵 ∪ { 𝐶 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐵 ∪ { 𝐶 } ) ) | |
| 29 | 24 10 2 28 27 | limcmpt | ⊢ ( 𝜑 → ( 𝐷 ∈ ( ( 𝑦 ∈ 𝐵 ↦ 𝑆 ) limℂ 𝐶 ) ↔ ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐵 ∪ { 𝐶 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ) ) |
| 30 | 4 29 | mpbid | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐵 ∪ { 𝐶 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ) |
| 31 | 18 26 27 28 3 30 | limccnp | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) ‘ 𝐶 ) ∈ ( ( ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) limℂ 𝑋 ) ) |
| 32 | eqid | ⊢ ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) = ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) | |
| 33 | iftrue | ⊢ ( 𝑦 = 𝐶 → if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) = 𝐷 ) | |
| 34 | ssun2 | ⊢ { 𝐶 } ⊆ ( 𝐵 ∪ { 𝐶 } ) | |
| 35 | snssg | ⊢ ( 𝐶 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) limℂ 𝑋 ) → ( 𝐶 ∈ ( 𝐵 ∪ { 𝐶 } ) ↔ { 𝐶 } ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ) | |
| 36 | 3 35 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐵 ∪ { 𝐶 } ) ↔ { 𝐶 } ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ) |
| 37 | 34 36 | mpbiri | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐵 ∪ { 𝐶 } ) ) |
| 38 | 32 33 37 4 | fvmptd3 | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) ‘ 𝐶 ) = 𝐷 ) |
| 39 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) | |
| 40 | eqidd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) = ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) ) | |
| 41 | eqeq1 | ⊢ ( 𝑦 = 𝑅 → ( 𝑦 = 𝐶 ↔ 𝑅 = 𝐶 ) ) | |
| 42 | 41 5 | ifbieq2d | ⊢ ( 𝑦 = 𝑅 → if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) = if ( 𝑅 = 𝐶 , 𝐷 , 𝑇 ) ) |
| 43 | 17 39 40 42 | fmptco | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 𝑅 = 𝐶 , 𝐷 , 𝑇 ) ) ) |
| 44 | 6 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑅 = 𝐶 ) → 𝑇 = 𝐷 ) |
| 45 | 44 | ifeq1da | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑅 = 𝐶 , 𝑇 , 𝑇 ) = if ( 𝑅 = 𝐶 , 𝐷 , 𝑇 ) ) |
| 46 | ifid | ⊢ if ( 𝑅 = 𝐶 , 𝑇 , 𝑇 ) = 𝑇 | |
| 47 | 45 46 | eqtr3di | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑅 = 𝐶 , 𝐷 , 𝑇 ) = 𝑇 ) |
| 48 | 47 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝑅 = 𝐶 , 𝐷 , 𝑇 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ) |
| 49 | 43 48 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) ) |
| 50 | 49 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑦 ∈ ( 𝐵 ∪ { 𝐶 } ) ↦ if ( 𝑦 = 𝐶 , 𝐷 , 𝑆 ) ) ∘ ( 𝑥 ∈ 𝐴 ↦ 𝑅 ) ) limℂ 𝑋 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) limℂ 𝑋 ) ) |
| 51 | 31 38 50 | 3eltr3d | ⊢ ( 𝜑 → 𝐷 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝑇 ) limℂ 𝑋 ) ) |