This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iooneg | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ - 𝐶 ∈ ( - 𝐵 (,) - 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltneg | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐶 ↔ - 𝐶 < - 𝐴 ) ) | |
| 2 | 1 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐶 ↔ - 𝐶 < - 𝐴 ) ) |
| 3 | ltneg | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 < 𝐵 ↔ - 𝐵 < - 𝐶 ) ) | |
| 4 | 3 | ancoms | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 < 𝐵 ↔ - 𝐵 < - 𝐶 ) ) |
| 5 | 4 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 < 𝐵 ↔ - 𝐵 < - 𝐶 ) ) |
| 6 | 2 5 | anbi12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ↔ ( - 𝐶 < - 𝐴 ∧ - 𝐵 < - 𝐶 ) ) ) |
| 7 | 6 | biancomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ↔ ( - 𝐵 < - 𝐶 ∧ - 𝐶 < - 𝐴 ) ) ) |
| 8 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 9 | rexr | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) | |
| 10 | rexr | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℝ* ) | |
| 11 | elioo5 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) | |
| 12 | 8 9 10 11 | syl3an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 13 | renegcl | ⊢ ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ ) | |
| 14 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 15 | renegcl | ⊢ ( 𝐶 ∈ ℝ → - 𝐶 ∈ ℝ ) | |
| 16 | rexr | ⊢ ( - 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ* ) | |
| 17 | rexr | ⊢ ( - 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ* ) | |
| 18 | rexr | ⊢ ( - 𝐶 ∈ ℝ → - 𝐶 ∈ ℝ* ) | |
| 19 | elioo5 | ⊢ ( ( - 𝐵 ∈ ℝ* ∧ - 𝐴 ∈ ℝ* ∧ - 𝐶 ∈ ℝ* ) → ( - 𝐶 ∈ ( - 𝐵 (,) - 𝐴 ) ↔ ( - 𝐵 < - 𝐶 ∧ - 𝐶 < - 𝐴 ) ) ) | |
| 20 | 16 17 18 19 | syl3an | ⊢ ( ( - 𝐵 ∈ ℝ ∧ - 𝐴 ∈ ℝ ∧ - 𝐶 ∈ ℝ ) → ( - 𝐶 ∈ ( - 𝐵 (,) - 𝐴 ) ↔ ( - 𝐵 < - 𝐶 ∧ - 𝐶 < - 𝐴 ) ) ) |
| 21 | 13 14 15 20 | syl3an | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( - 𝐶 ∈ ( - 𝐵 (,) - 𝐴 ) ↔ ( - 𝐵 < - 𝐶 ∧ - 𝐶 < - 𝐴 ) ) ) |
| 22 | 21 | 3com12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( - 𝐶 ∈ ( - 𝐵 (,) - 𝐴 ) ↔ ( - 𝐵 < - 𝐶 ∧ - 𝐶 < - 𝐴 ) ) ) |
| 23 | 7 12 22 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ - 𝐶 ∈ ( - 𝐵 (,) - 𝐴 ) ) ) |