This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any limit of F is also a limit of the restriction of F . (Contributed by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limcresi | ⊢ ( 𝐹 limℂ 𝐵 ) ⊆ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcrcl | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) | |
| 2 | 1 | simp1d | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 3 | 1 | simp2d | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → dom 𝐹 ⊆ ℂ ) |
| 4 | 1 | simp3d | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → 𝐵 ∈ ℂ ) |
| 5 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 6 | 2 3 4 5 | ellimc2 | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
| 7 | 6 | ibi | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
| 8 | inss2 | ⊢ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ⊆ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) | |
| 9 | difss | ⊢ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ⊆ ( dom 𝐹 ∩ 𝐶 ) | |
| 10 | inss2 | ⊢ ( dom 𝐹 ∩ 𝐶 ) ⊆ 𝐶 | |
| 11 | 9 10 | sstri | ⊢ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ⊆ 𝐶 |
| 12 | 8 11 | sstri | ⊢ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ⊆ 𝐶 |
| 13 | resima2 | ⊢ ( ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ⊆ 𝐶 → ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) = ( 𝐹 “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ) | |
| 14 | 12 13 | ax-mp | ⊢ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) = ( 𝐹 “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) |
| 15 | inss1 | ⊢ ( dom 𝐹 ∩ 𝐶 ) ⊆ dom 𝐹 | |
| 16 | ssdif | ⊢ ( ( dom 𝐹 ∩ 𝐶 ) ⊆ dom 𝐹 → ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ⊆ ( dom 𝐹 ∖ { 𝐵 } ) ) | |
| 17 | 15 16 | ax-mp | ⊢ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ⊆ ( dom 𝐹 ∖ { 𝐵 } ) |
| 18 | sslin | ⊢ ( ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ⊆ ( dom 𝐹 ∖ { 𝐵 } ) → ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ⊆ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) | |
| 19 | imass2 | ⊢ ( ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ⊆ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) → ( 𝐹 “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ) | |
| 20 | 17 18 19 | mp2b | ⊢ ( 𝐹 “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) |
| 21 | 14 20 | eqsstri | ⊢ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) |
| 22 | sstr | ⊢ ( ( ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ∧ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) → ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) | |
| 23 | 21 22 | mpan | ⊢ ( ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 → ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) |
| 24 | 23 | anim2i | ⊢ ( ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) → ( 𝐵 ∈ 𝑣 ∧ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
| 25 | 24 | reximi | ⊢ ( ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
| 26 | 25 | imim2i | ⊢ ( ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 27 | 26 | ralimi | ⊢ ( ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
| 28 | 27 | anim2i | ⊢ ( ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) → ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
| 29 | 7 28 | syl | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
| 30 | fresin | ⊢ ( 𝐹 : dom 𝐹 ⟶ ℂ → ( 𝐹 ↾ 𝐶 ) : ( dom 𝐹 ∩ 𝐶 ) ⟶ ℂ ) | |
| 31 | 2 30 | syl | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 ↾ 𝐶 ) : ( dom 𝐹 ∩ 𝐶 ) ⟶ ℂ ) |
| 32 | 15 3 | sstrid | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( dom 𝐹 ∩ 𝐶 ) ⊆ ℂ ) |
| 33 | 31 32 4 5 | ellimc2 | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
| 34 | 29 33 | mpbird | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) ) |
| 35 | 34 | ssriv | ⊢ ( 𝐹 limℂ 𝐵 ) ⊆ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) |