This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If B is an interior point of C u. { B } relative to the domain A , then a limit point of ` F |`C extends to a limit of F . (Contributed by Mario Carneiro, 27-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcres.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| limcres.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | ||
| limcres.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | ||
| limcres.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| limcres.j | ⊢ 𝐽 = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) | ||
| limcres.i | ⊢ ( 𝜑 → 𝐵 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐶 ∪ { 𝐵 } ) ) ) | ||
| Assertion | limcres | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) = ( 𝐹 limℂ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcres.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 2 | limcres.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | |
| 3 | limcres.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| 4 | limcres.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 5 | limcres.j | ⊢ 𝐽 = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) | |
| 6 | limcres.i | ⊢ ( 𝜑 → 𝐵 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐶 ∪ { 𝐵 } ) ) ) | |
| 7 | limcrcl | ⊢ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) → ( ( 𝐹 ↾ 𝐶 ) : dom ( 𝐹 ↾ 𝐶 ) ⟶ ℂ ∧ dom ( 𝐹 ↾ 𝐶 ) ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) | |
| 8 | 7 | simp3d | ⊢ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) → 𝐵 ∈ ℂ ) |
| 9 | limccl | ⊢ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) ⊆ ℂ | |
| 10 | 9 | sseli | ⊢ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) → 𝑥 ∈ ℂ ) |
| 11 | 8 10 | jca | ⊢ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) → ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) |
| 12 | 11 | a1i | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) → ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ) |
| 13 | limcrcl | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) | |
| 14 | 13 | simp3d | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → 𝐵 ∈ ℂ ) |
| 15 | limccl | ⊢ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ | |
| 16 | 15 | sseli | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → 𝑥 ∈ ℂ ) |
| 17 | 14 16 | jca | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) |
| 18 | 17 | a1i | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ) |
| 19 | 4 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 20 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → 𝐴 ⊆ ℂ ) |
| 21 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → 𝐵 ∈ ℂ ) | |
| 22 | 21 | snssd | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → { 𝐵 } ⊆ ℂ ) |
| 23 | 20 22 | unssd | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) |
| 24 | resttopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) | |
| 25 | 19 23 24 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 26 | 5 25 | eqeltrid | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → 𝐽 ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 27 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) → 𝐽 ∈ Top ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → 𝐽 ∈ Top ) |
| 29 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → 𝐶 ⊆ 𝐴 ) |
| 30 | unss1 | ⊢ ( 𝐶 ⊆ 𝐴 → ( 𝐶 ∪ { 𝐵 } ) ⊆ ( 𝐴 ∪ { 𝐵 } ) ) | |
| 31 | 29 30 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝐶 ∪ { 𝐵 } ) ⊆ ( 𝐴 ∪ { 𝐵 } ) ) |
| 32 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) → ( 𝐴 ∪ { 𝐵 } ) = ∪ 𝐽 ) | |
| 33 | 26 32 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝐴 ∪ { 𝐵 } ) = ∪ 𝐽 ) |
| 34 | 31 33 | sseqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝐶 ∪ { 𝐵 } ) ⊆ ∪ 𝐽 ) |
| 35 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → 𝐵 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐶 ∪ { 𝐵 } ) ) ) |
| 36 | elun | ⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ { 𝐵 } ) ) | |
| 37 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑥 ∈ ℂ ) | |
| 38 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 39 | 38 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 40 | 37 39 | ifcld | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ∧ 𝑧 ∈ 𝐴 ) → if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
| 41 | elsni | ⊢ ( 𝑧 ∈ { 𝐵 } → 𝑧 = 𝐵 ) | |
| 42 | 41 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ∧ 𝑧 ∈ { 𝐵 } ) → 𝑧 = 𝐵 ) |
| 43 | 42 | iftrued | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ∧ 𝑧 ∈ { 𝐵 } ) → if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) = 𝑥 ) |
| 44 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ∧ 𝑧 ∈ { 𝐵 } ) → 𝑥 ∈ ℂ ) | |
| 45 | 43 44 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ∧ 𝑧 ∈ { 𝐵 } ) → if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
| 46 | 40 45 | jaodan | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ∧ ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ { 𝐵 } ) ) → if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
| 47 | 36 46 | sylan2b | ⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
| 48 | 47 | fmpttd | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ) |
| 49 | 33 | feq2d | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) : ∪ 𝐽 ⟶ ℂ ) ) |
| 50 | 48 49 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) : ∪ 𝐽 ⟶ ℂ ) |
| 51 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 52 | 19 | toponunii | ⊢ ℂ = ∪ 𝐾 |
| 53 | 51 52 | cnprest | ⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝐶 ∪ { 𝐵 } ) ⊆ ∪ 𝐽 ) ∧ ( 𝐵 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐶 ∪ { 𝐵 } ) ) ∧ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) : ∪ 𝐽 ⟶ ℂ ) ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ↔ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝐶 ∪ { 𝐵 } ) ) ∈ ( ( ( 𝐽 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 54 | 28 34 35 50 53 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ↔ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝐶 ∪ { 𝐵 } ) ) ∈ ( ( ( 𝐽 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 55 | eqid | ⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) | |
| 56 | 5 4 55 38 20 21 | ellimc | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 57 | eqid | ⊢ ( 𝐾 ↾t ( 𝐶 ∪ { 𝐵 } ) ) = ( 𝐾 ↾t ( 𝐶 ∪ { 𝐵 } ) ) | |
| 58 | eqid | ⊢ ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) | |
| 59 | 38 29 | fssresd | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ ℂ ) |
| 60 | 29 20 | sstrd | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → 𝐶 ⊆ ℂ ) |
| 61 | 57 4 58 59 60 21 | ellimc | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 62 | elun | ⊢ ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐶 ∨ 𝑧 ∈ { 𝐵 } ) ) | |
| 63 | velsn | ⊢ ( 𝑧 ∈ { 𝐵 } ↔ 𝑧 = 𝐵 ) | |
| 64 | 63 | orbi2i | ⊢ ( ( 𝑧 ∈ 𝐶 ∨ 𝑧 ∈ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐶 ∨ 𝑧 = 𝐵 ) ) |
| 65 | 62 64 | bitri | ⊢ ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐶 ∨ 𝑧 = 𝐵 ) ) |
| 66 | pm5.61 | ⊢ ( ( ( 𝑧 ∈ 𝐶 ∨ 𝑧 = 𝐵 ) ∧ ¬ 𝑧 = 𝐵 ) ↔ ( 𝑧 ∈ 𝐶 ∧ ¬ 𝑧 = 𝐵 ) ) | |
| 67 | fvres | ⊢ ( 𝑧 ∈ 𝐶 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 68 | 67 | adantr | ⊢ ( ( 𝑧 ∈ 𝐶 ∧ ¬ 𝑧 = 𝐵 ) → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 69 | 66 68 | sylbi | ⊢ ( ( ( 𝑧 ∈ 𝐶 ∨ 𝑧 = 𝐵 ) ∧ ¬ 𝑧 = 𝐵 ) → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 70 | 69 | ifeq2da | ⊢ ( ( 𝑧 ∈ 𝐶 ∨ 𝑧 = 𝐵 ) → if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) = if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) |
| 71 | 65 70 | sylbi | ⊢ ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) → if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) = if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) |
| 72 | 71 | mpteq2ia | ⊢ ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) |
| 73 | 31 | resmptd | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝐶 ∪ { 𝐵 } ) ) = ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 74 | 72 73 | eqtr4id | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) = ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝐶 ∪ { 𝐵 } ) ) ) |
| 75 | 5 | oveq1i | ⊢ ( 𝐽 ↾t ( 𝐶 ∪ { 𝐵 } ) ) = ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ↾t ( 𝐶 ∪ { 𝐵 } ) ) |
| 76 | cnex | ⊢ ℂ ∈ V | |
| 77 | 76 | ssex | ⊢ ( ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ → ( 𝐴 ∪ { 𝐵 } ) ∈ V ) |
| 78 | 23 77 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝐴 ∪ { 𝐵 } ) ∈ V ) |
| 79 | restabs | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐶 ∪ { 𝐵 } ) ⊆ ( 𝐴 ∪ { 𝐵 } ) ∧ ( 𝐴 ∪ { 𝐵 } ) ∈ V ) → ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ↾t ( 𝐶 ∪ { 𝐵 } ) ) = ( 𝐾 ↾t ( 𝐶 ∪ { 𝐵 } ) ) ) | |
| 80 | 19 31 78 79 | mp3an2i | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ↾t ( 𝐶 ∪ { 𝐵 } ) ) = ( 𝐾 ↾t ( 𝐶 ∪ { 𝐵 } ) ) ) |
| 81 | 75 80 | eqtr2id | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝐾 ↾t ( 𝐶 ∪ { 𝐵 } ) ) = ( 𝐽 ↾t ( 𝐶 ∪ { 𝐵 } ) ) ) |
| 82 | 81 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( ( 𝐾 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) = ( ( 𝐽 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) ) |
| 83 | 82 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( ( ( 𝐾 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) = ( ( ( 𝐽 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) |
| 84 | 74 83 | eleq12d | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ↔ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝐶 ∪ { 𝐵 } ) ) ∈ ( ( ( 𝐽 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 85 | 61 84 | bitrd | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) ↔ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝐶 ∪ { 𝐵 } ) ) ∈ ( ( ( 𝐽 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 86 | 54 56 85 | 3bitr4rd | ⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) ↔ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) ) |
| 87 | 86 | ex | ⊢ ( 𝜑 → ( ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) ↔ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) ) ) |
| 88 | 12 18 87 | pm5.21ndd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) ↔ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) ) |
| 89 | 88 | eqrdv | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) = ( 𝐹 limℂ 𝐵 ) ) |