This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: L'Hôpital's Rule for limits from the left. If F and G are differentiable real functions on ( A , B ) , and F and G both approach 0 at B , and G ( x ) and G ' ( x ) are not zero on ( A , B ) , and the limit of F ' ( x ) / G ' ( x ) at B is C , then the limit F ( x ) / G ( x ) at B also exists and equals C . (Contributed by Mario Carneiro, 29-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lhop2.a | |- ( ph -> A e. RR* ) |
|
| lhop2.b | |- ( ph -> B e. RR ) |
||
| lhop2.l | |- ( ph -> A < B ) |
||
| lhop2.f | |- ( ph -> F : ( A (,) B ) --> RR ) |
||
| lhop2.g | |- ( ph -> G : ( A (,) B ) --> RR ) |
||
| lhop2.if | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
||
| lhop2.ig | |- ( ph -> dom ( RR _D G ) = ( A (,) B ) ) |
||
| lhop2.f0 | |- ( ph -> 0 e. ( F limCC B ) ) |
||
| lhop2.g0 | |- ( ph -> 0 e. ( G limCC B ) ) |
||
| lhop2.gn0 | |- ( ph -> -. 0 e. ran G ) |
||
| lhop2.gd0 | |- ( ph -> -. 0 e. ran ( RR _D G ) ) |
||
| lhop2.c | |- ( ph -> C e. ( ( z e. ( A (,) B ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC B ) ) |
||
| Assertion | lhop2 | |- ( ph -> C e. ( ( z e. ( A (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhop2.a | |- ( ph -> A e. RR* ) |
|
| 2 | lhop2.b | |- ( ph -> B e. RR ) |
|
| 3 | lhop2.l | |- ( ph -> A < B ) |
|
| 4 | lhop2.f | |- ( ph -> F : ( A (,) B ) --> RR ) |
|
| 5 | lhop2.g | |- ( ph -> G : ( A (,) B ) --> RR ) |
|
| 6 | lhop2.if | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
|
| 7 | lhop2.ig | |- ( ph -> dom ( RR _D G ) = ( A (,) B ) ) |
|
| 8 | lhop2.f0 | |- ( ph -> 0 e. ( F limCC B ) ) |
|
| 9 | lhop2.g0 | |- ( ph -> 0 e. ( G limCC B ) ) |
|
| 10 | lhop2.gn0 | |- ( ph -> -. 0 e. ran G ) |
|
| 11 | lhop2.gd0 | |- ( ph -> -. 0 e. ran ( RR _D G ) ) |
|
| 12 | lhop2.c | |- ( ph -> C e. ( ( z e. ( A (,) B ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC B ) ) |
|
| 13 | qssre | |- QQ C_ RR |
|
| 14 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 15 | qbtwnxr | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> E. a e. QQ ( A < a /\ a < B ) ) |
|
| 16 | 1 14 3 15 | syl3anc | |- ( ph -> E. a e. QQ ( A < a /\ a < B ) ) |
| 17 | ssrexv | |- ( QQ C_ RR -> ( E. a e. QQ ( A < a /\ a < B ) -> E. a e. RR ( A < a /\ a < B ) ) ) |
|
| 18 | 13 16 17 | mpsyl | |- ( ph -> E. a e. RR ( A < a /\ a < B ) ) |
| 19 | simpr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> z e. ( a (,) B ) ) |
|
| 20 | simprl | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> a e. RR ) |
|
| 21 | 20 | adantr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> a e. RR ) |
| 22 | 2 | ad2antrr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> B e. RR ) |
| 23 | elioore | |- ( z e. ( a (,) B ) -> z e. RR ) |
|
| 24 | 23 | adantl | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> z e. RR ) |
| 25 | iooneg | |- ( ( a e. RR /\ B e. RR /\ z e. RR ) -> ( z e. ( a (,) B ) <-> -u z e. ( -u B (,) -u a ) ) ) |
|
| 26 | 21 22 24 25 | syl3anc | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> ( z e. ( a (,) B ) <-> -u z e. ( -u B (,) -u a ) ) ) |
| 27 | 19 26 | mpbid | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> -u z e. ( -u B (,) -u a ) ) |
| 28 | 27 | adantrr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ ( z e. ( a (,) B ) /\ -u z =/= -u B ) ) -> -u z e. ( -u B (,) -u a ) ) |
| 29 | 4 | ad2antrr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> F : ( A (,) B ) --> RR ) |
| 30 | elioore | |- ( x e. ( -u B (,) -u a ) -> x e. RR ) |
|
| 31 | 30 | adantl | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> x e. RR ) |
| 32 | 31 | recnd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> x e. CC ) |
| 33 | 32 | negnegd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -u -u x = x ) |
| 34 | simpr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> x e. ( -u B (,) -u a ) ) |
|
| 35 | 33 34 | eqeltrd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -u -u x e. ( -u B (,) -u a ) ) |
| 36 | 20 | adantr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> a e. RR ) |
| 37 | 2 | ad2antrr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> B e. RR ) |
| 38 | 31 | renegcld | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -u x e. RR ) |
| 39 | iooneg | |- ( ( a e. RR /\ B e. RR /\ -u x e. RR ) -> ( -u x e. ( a (,) B ) <-> -u -u x e. ( -u B (,) -u a ) ) ) |
|
| 40 | 36 37 38 39 | syl3anc | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -u x e. ( a (,) B ) <-> -u -u x e. ( -u B (,) -u a ) ) ) |
| 41 | 35 40 | mpbird | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -u x e. ( a (,) B ) ) |
| 42 | 1 | adantr | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> A e. RR* ) |
| 43 | 20 | rexrd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> a e. RR* ) |
| 44 | simprrl | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> A < a ) |
|
| 45 | 42 43 44 | xrltled | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> A <_ a ) |
| 46 | iooss1 | |- ( ( A e. RR* /\ A <_ a ) -> ( a (,) B ) C_ ( A (,) B ) ) |
|
| 47 | 42 45 46 | syl2anc | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( a (,) B ) C_ ( A (,) B ) ) |
| 48 | 47 | sselda | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ -u x e. ( a (,) B ) ) -> -u x e. ( A (,) B ) ) |
| 49 | 41 48 | syldan | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -u x e. ( A (,) B ) ) |
| 50 | 29 49 | ffvelcdmd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( F ` -u x ) e. RR ) |
| 51 | 50 | recnd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( F ` -u x ) e. CC ) |
| 52 | 5 | ad2antrr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> G : ( A (,) B ) --> RR ) |
| 53 | 52 49 | ffvelcdmd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( G ` -u x ) e. RR ) |
| 54 | 53 | recnd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( G ` -u x ) e. CC ) |
| 55 | 10 | ad2antrr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -. 0 e. ran G ) |
| 56 | 5 | adantr | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> G : ( A (,) B ) --> RR ) |
| 57 | ax-resscn | |- RR C_ CC |
|
| 58 | fss | |- ( ( G : ( A (,) B ) --> RR /\ RR C_ CC ) -> G : ( A (,) B ) --> CC ) |
|
| 59 | 56 57 58 | sylancl | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> G : ( A (,) B ) --> CC ) |
| 60 | 59 | adantr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> G : ( A (,) B ) --> CC ) |
| 61 | 60 | ffnd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> G Fn ( A (,) B ) ) |
| 62 | fnfvelrn | |- ( ( G Fn ( A (,) B ) /\ -u x e. ( A (,) B ) ) -> ( G ` -u x ) e. ran G ) |
|
| 63 | 61 49 62 | syl2anc | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( G ` -u x ) e. ran G ) |
| 64 | eleq1 | |- ( ( G ` -u x ) = 0 -> ( ( G ` -u x ) e. ran G <-> 0 e. ran G ) ) |
|
| 65 | 63 64 | syl5ibcom | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( G ` -u x ) = 0 -> 0 e. ran G ) ) |
| 66 | 65 | necon3bd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -. 0 e. ran G -> ( G ` -u x ) =/= 0 ) ) |
| 67 | 55 66 | mpd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( G ` -u x ) =/= 0 ) |
| 68 | 51 54 67 | divcld | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( F ` -u x ) / ( G ` -u x ) ) e. CC ) |
| 69 | limcresi | |- ( ( z e. RR |-> -u z ) limCC B ) C_ ( ( ( z e. RR |-> -u z ) |` ( a (,) B ) ) limCC B ) |
|
| 70 | ioossre | |- ( a (,) B ) C_ RR |
|
| 71 | resmpt | |- ( ( a (,) B ) C_ RR -> ( ( z e. RR |-> -u z ) |` ( a (,) B ) ) = ( z e. ( a (,) B ) |-> -u z ) ) |
|
| 72 | 70 71 | ax-mp | |- ( ( z e. RR |-> -u z ) |` ( a (,) B ) ) = ( z e. ( a (,) B ) |-> -u z ) |
| 73 | 72 | oveq1i | |- ( ( ( z e. RR |-> -u z ) |` ( a (,) B ) ) limCC B ) = ( ( z e. ( a (,) B ) |-> -u z ) limCC B ) |
| 74 | 69 73 | sseqtri | |- ( ( z e. RR |-> -u z ) limCC B ) C_ ( ( z e. ( a (,) B ) |-> -u z ) limCC B ) |
| 75 | eqid | |- ( z e. RR |-> -u z ) = ( z e. RR |-> -u z ) |
|
| 76 | 75 | negcncf | |- ( RR C_ CC -> ( z e. RR |-> -u z ) e. ( RR -cn-> CC ) ) |
| 77 | 57 76 | mp1i | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( z e. RR |-> -u z ) e. ( RR -cn-> CC ) ) |
| 78 | 2 | adantr | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> B e. RR ) |
| 79 | negeq | |- ( z = B -> -u z = -u B ) |
|
| 80 | 77 78 79 | cnmptlimc | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -u B e. ( ( z e. RR |-> -u z ) limCC B ) ) |
| 81 | 74 80 | sselid | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -u B e. ( ( z e. ( a (,) B ) |-> -u z ) limCC B ) ) |
| 82 | 78 | renegcld | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -u B e. RR ) |
| 83 | 20 | renegcld | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -u a e. RR ) |
| 84 | 83 | rexrd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -u a e. RR* ) |
| 85 | simprrr | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> a < B ) |
|
| 86 | 20 78 | ltnegd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( a < B <-> -u B < -u a ) ) |
| 87 | 85 86 | mpbid | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -u B < -u a ) |
| 88 | 50 | fmpttd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) : ( -u B (,) -u a ) --> RR ) |
| 89 | 53 | fmpttd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) : ( -u B (,) -u a ) --> RR ) |
| 90 | reelprrecn | |- RR e. { RR , CC } |
|
| 91 | 90 | a1i | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> RR e. { RR , CC } ) |
| 92 | neg1cn | |- -u 1 e. CC |
|
| 93 | 92 | a1i | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -u 1 e. CC ) |
| 94 | 4 | adantr | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> F : ( A (,) B ) --> RR ) |
| 95 | 94 | ffvelcdmda | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ y e. ( A (,) B ) ) -> ( F ` y ) e. RR ) |
| 96 | 95 | recnd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ y e. ( A (,) B ) ) -> ( F ` y ) e. CC ) |
| 97 | fvexd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ y e. ( A (,) B ) ) -> ( ( RR _D F ) ` y ) e. _V ) |
|
| 98 | 1cnd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> 1 e. CC ) |
|
| 99 | simpr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. RR ) -> x e. RR ) |
|
| 100 | 99 | recnd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. RR ) -> x e. CC ) |
| 101 | 1cnd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. RR ) -> 1 e. CC ) |
|
| 102 | 91 | dvmptid | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D ( x e. RR |-> x ) ) = ( x e. RR |-> 1 ) ) |
| 103 | ioossre | |- ( -u B (,) -u a ) C_ RR |
|
| 104 | 103 | a1i | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( -u B (,) -u a ) C_ RR ) |
| 105 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 106 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 107 | iooretop | |- ( -u B (,) -u a ) e. ( topGen ` ran (,) ) |
|
| 108 | 107 | a1i | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( -u B (,) -u a ) e. ( topGen ` ran (,) ) ) |
| 109 | 91 100 101 102 104 105 106 108 | dvmptres | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D ( x e. ( -u B (,) -u a ) |-> x ) ) = ( x e. ( -u B (,) -u a ) |-> 1 ) ) |
| 110 | 91 32 98 109 | dvmptneg | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D ( x e. ( -u B (,) -u a ) |-> -u x ) ) = ( x e. ( -u B (,) -u a ) |-> -u 1 ) ) |
| 111 | 94 | feqmptd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> F = ( y e. ( A (,) B ) |-> ( F ` y ) ) ) |
| 112 | 111 | oveq2d | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D F ) = ( RR _D ( y e. ( A (,) B ) |-> ( F ` y ) ) ) ) |
| 113 | dvf | |- ( RR _D F ) : dom ( RR _D F ) --> CC |
|
| 114 | 6 | adantr | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> dom ( RR _D F ) = ( A (,) B ) ) |
| 115 | 114 | feq2d | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( RR _D F ) : dom ( RR _D F ) --> CC <-> ( RR _D F ) : ( A (,) B ) --> CC ) ) |
| 116 | 113 115 | mpbii | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 117 | 116 | feqmptd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D F ) = ( y e. ( A (,) B ) |-> ( ( RR _D F ) ` y ) ) ) |
| 118 | 112 117 | eqtr3d | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D ( y e. ( A (,) B ) |-> ( F ` y ) ) ) = ( y e. ( A (,) B ) |-> ( ( RR _D F ) ` y ) ) ) |
| 119 | fveq2 | |- ( y = -u x -> ( F ` y ) = ( F ` -u x ) ) |
|
| 120 | fveq2 | |- ( y = -u x -> ( ( RR _D F ) ` y ) = ( ( RR _D F ) ` -u x ) ) |
|
| 121 | 91 91 49 93 96 97 110 118 119 120 | dvmptco | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) = ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D F ) ` -u x ) x. -u 1 ) ) ) |
| 122 | 116 | adantr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 123 | 122 49 | ffvelcdmd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( RR _D F ) ` -u x ) e. CC ) |
| 124 | 123 93 | mulcomd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( ( RR _D F ) ` -u x ) x. -u 1 ) = ( -u 1 x. ( ( RR _D F ) ` -u x ) ) ) |
| 125 | 123 | mulm1d | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -u 1 x. ( ( RR _D F ) ` -u x ) ) = -u ( ( RR _D F ) ` -u x ) ) |
| 126 | 124 125 | eqtrd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( ( RR _D F ) ` -u x ) x. -u 1 ) = -u ( ( RR _D F ) ` -u x ) ) |
| 127 | 126 | mpteq2dva | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D F ) ` -u x ) x. -u 1 ) ) = ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D F ) ` -u x ) ) ) |
| 128 | 121 127 | eqtrd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) = ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D F ) ` -u x ) ) ) |
| 129 | 128 | dmeqd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> dom ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) = dom ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D F ) ` -u x ) ) ) |
| 130 | negex | |- -u ( ( RR _D F ) ` -u x ) e. _V |
|
| 131 | eqid | |- ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D F ) ` -u x ) ) = ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D F ) ` -u x ) ) |
|
| 132 | 130 131 | dmmpti | |- dom ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D F ) ` -u x ) ) = ( -u B (,) -u a ) |
| 133 | 129 132 | eqtrdi | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> dom ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) = ( -u B (,) -u a ) ) |
| 134 | 56 | ffvelcdmda | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ y e. ( A (,) B ) ) -> ( G ` y ) e. RR ) |
| 135 | 134 | recnd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ y e. ( A (,) B ) ) -> ( G ` y ) e. CC ) |
| 136 | fvexd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ y e. ( A (,) B ) ) -> ( ( RR _D G ) ` y ) e. _V ) |
|
| 137 | 56 | feqmptd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> G = ( y e. ( A (,) B ) |-> ( G ` y ) ) ) |
| 138 | 137 | oveq2d | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D G ) = ( RR _D ( y e. ( A (,) B ) |-> ( G ` y ) ) ) ) |
| 139 | dvf | |- ( RR _D G ) : dom ( RR _D G ) --> CC |
|
| 140 | 7 | adantr | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> dom ( RR _D G ) = ( A (,) B ) ) |
| 141 | 140 | feq2d | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( RR _D G ) : dom ( RR _D G ) --> CC <-> ( RR _D G ) : ( A (,) B ) --> CC ) ) |
| 142 | 139 141 | mpbii | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D G ) : ( A (,) B ) --> CC ) |
| 143 | 142 | feqmptd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D G ) = ( y e. ( A (,) B ) |-> ( ( RR _D G ) ` y ) ) ) |
| 144 | 138 143 | eqtr3d | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D ( y e. ( A (,) B ) |-> ( G ` y ) ) ) = ( y e. ( A (,) B ) |-> ( ( RR _D G ) ` y ) ) ) |
| 145 | fveq2 | |- ( y = -u x -> ( G ` y ) = ( G ` -u x ) ) |
|
| 146 | fveq2 | |- ( y = -u x -> ( ( RR _D G ) ` y ) = ( ( RR _D G ) ` -u x ) ) |
|
| 147 | 91 91 49 93 135 136 110 144 145 146 | dvmptco | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) = ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D G ) ` -u x ) x. -u 1 ) ) ) |
| 148 | 142 | adantr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( RR _D G ) : ( A (,) B ) --> CC ) |
| 149 | 148 49 | ffvelcdmd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( RR _D G ) ` -u x ) e. CC ) |
| 150 | 149 93 | mulcomd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( ( RR _D G ) ` -u x ) x. -u 1 ) = ( -u 1 x. ( ( RR _D G ) ` -u x ) ) ) |
| 151 | 149 | mulm1d | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -u 1 x. ( ( RR _D G ) ` -u x ) ) = -u ( ( RR _D G ) ` -u x ) ) |
| 152 | 150 151 | eqtrd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( ( RR _D G ) ` -u x ) x. -u 1 ) = -u ( ( RR _D G ) ` -u x ) ) |
| 153 | 152 | mpteq2dva | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D G ) ` -u x ) x. -u 1 ) ) = ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) ) |
| 154 | 147 153 | eqtrd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) = ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) ) |
| 155 | 154 | dmeqd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> dom ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) = dom ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) ) |
| 156 | negex | |- -u ( ( RR _D G ) ` -u x ) e. _V |
|
| 157 | eqid | |- ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) = ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) |
|
| 158 | 156 157 | dmmpti | |- dom ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) = ( -u B (,) -u a ) |
| 159 | 155 158 | eqtrdi | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> dom ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) = ( -u B (,) -u a ) ) |
| 160 | 49 | adantrr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ ( x e. ( -u B (,) -u a ) /\ -u x =/= B ) ) -> -u x e. ( A (,) B ) ) |
| 161 | limcresi | |- ( ( x e. RR |-> -u x ) limCC -u B ) C_ ( ( ( x e. RR |-> -u x ) |` ( -u B (,) -u a ) ) limCC -u B ) |
|
| 162 | resmpt | |- ( ( -u B (,) -u a ) C_ RR -> ( ( x e. RR |-> -u x ) |` ( -u B (,) -u a ) ) = ( x e. ( -u B (,) -u a ) |-> -u x ) ) |
|
| 163 | 103 162 | ax-mp | |- ( ( x e. RR |-> -u x ) |` ( -u B (,) -u a ) ) = ( x e. ( -u B (,) -u a ) |-> -u x ) |
| 164 | 163 | oveq1i | |- ( ( ( x e. RR |-> -u x ) |` ( -u B (,) -u a ) ) limCC -u B ) = ( ( x e. ( -u B (,) -u a ) |-> -u x ) limCC -u B ) |
| 165 | 161 164 | sseqtri | |- ( ( x e. RR |-> -u x ) limCC -u B ) C_ ( ( x e. ( -u B (,) -u a ) |-> -u x ) limCC -u B ) |
| 166 | 78 | recnd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> B e. CC ) |
| 167 | 166 | negnegd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -u -u B = B ) |
| 168 | eqid | |- ( x e. RR |-> -u x ) = ( x e. RR |-> -u x ) |
|
| 169 | 168 | negcncf | |- ( RR C_ CC -> ( x e. RR |-> -u x ) e. ( RR -cn-> CC ) ) |
| 170 | 57 169 | mp1i | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( x e. RR |-> -u x ) e. ( RR -cn-> CC ) ) |
| 171 | negeq | |- ( x = -u B -> -u x = -u -u B ) |
|
| 172 | 170 82 171 | cnmptlimc | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -u -u B e. ( ( x e. RR |-> -u x ) limCC -u B ) ) |
| 173 | 167 172 | eqeltrrd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> B e. ( ( x e. RR |-> -u x ) limCC -u B ) ) |
| 174 | 165 173 | sselid | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> B e. ( ( x e. ( -u B (,) -u a ) |-> -u x ) limCC -u B ) ) |
| 175 | 8 | adantr | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> 0 e. ( F limCC B ) ) |
| 176 | 111 | oveq1d | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( F limCC B ) = ( ( y e. ( A (,) B ) |-> ( F ` y ) ) limCC B ) ) |
| 177 | 175 176 | eleqtrd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> 0 e. ( ( y e. ( A (,) B ) |-> ( F ` y ) ) limCC B ) ) |
| 178 | eliooord | |- ( x e. ( -u B (,) -u a ) -> ( -u B < x /\ x < -u a ) ) |
|
| 179 | 178 | adantl | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -u B < x /\ x < -u a ) ) |
| 180 | 179 | simpld | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -u B < x ) |
| 181 | 37 31 180 | ltnegcon1d | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -u x < B ) |
| 182 | 38 181 | ltned | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -u x =/= B ) |
| 183 | 182 | neneqd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -. -u x = B ) |
| 184 | 183 | pm2.21d | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -u x = B -> ( F ` -u x ) = 0 ) ) |
| 185 | 184 | impr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ ( x e. ( -u B (,) -u a ) /\ -u x = B ) ) -> ( F ` -u x ) = 0 ) |
| 186 | 160 96 174 177 119 185 | limcco | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> 0 e. ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) limCC -u B ) ) |
| 187 | 9 | adantr | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> 0 e. ( G limCC B ) ) |
| 188 | 137 | oveq1d | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( G limCC B ) = ( ( y e. ( A (,) B ) |-> ( G ` y ) ) limCC B ) ) |
| 189 | 187 188 | eleqtrd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> 0 e. ( ( y e. ( A (,) B ) |-> ( G ` y ) ) limCC B ) ) |
| 190 | 183 | pm2.21d | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -u x = B -> ( G ` -u x ) = 0 ) ) |
| 191 | 190 | impr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ ( x e. ( -u B (,) -u a ) /\ -u x = B ) ) -> ( G ` -u x ) = 0 ) |
| 192 | 160 135 174 189 145 191 | limcco | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> 0 e. ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) limCC -u B ) ) |
| 193 | 63 | fmpttd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) : ( -u B (,) -u a ) --> ran G ) |
| 194 | 193 | frnd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ran ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) C_ ran G ) |
| 195 | 10 | adantr | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -. 0 e. ran G ) |
| 196 | 194 195 | ssneldd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -. 0 e. ran ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) |
| 197 | 11 | adantr | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -. 0 e. ran ( RR _D G ) ) |
| 198 | 154 | rneqd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ran ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) = ran ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) ) |
| 199 | 198 | eleq2d | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( 0 e. ran ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) <-> 0 e. ran ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) ) ) |
| 200 | 157 156 | elrnmpti | |- ( 0 e. ran ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) <-> E. x e. ( -u B (,) -u a ) 0 = -u ( ( RR _D G ) ` -u x ) ) |
| 201 | eqcom | |- ( 0 = -u ( ( RR _D G ) ` -u x ) <-> -u ( ( RR _D G ) ` -u x ) = 0 ) |
|
| 202 | 149 | negeq0d | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( ( RR _D G ) ` -u x ) = 0 <-> -u ( ( RR _D G ) ` -u x ) = 0 ) ) |
| 203 | 148 | ffnd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( RR _D G ) Fn ( A (,) B ) ) |
| 204 | fnfvelrn | |- ( ( ( RR _D G ) Fn ( A (,) B ) /\ -u x e. ( A (,) B ) ) -> ( ( RR _D G ) ` -u x ) e. ran ( RR _D G ) ) |
|
| 205 | 203 49 204 | syl2anc | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( RR _D G ) ` -u x ) e. ran ( RR _D G ) ) |
| 206 | eleq1 | |- ( ( ( RR _D G ) ` -u x ) = 0 -> ( ( ( RR _D G ) ` -u x ) e. ran ( RR _D G ) <-> 0 e. ran ( RR _D G ) ) ) |
|
| 207 | 205 206 | syl5ibcom | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( ( RR _D G ) ` -u x ) = 0 -> 0 e. ran ( RR _D G ) ) ) |
| 208 | 202 207 | sylbird | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -u ( ( RR _D G ) ` -u x ) = 0 -> 0 e. ran ( RR _D G ) ) ) |
| 209 | 201 208 | biimtrid | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( 0 = -u ( ( RR _D G ) ` -u x ) -> 0 e. ran ( RR _D G ) ) ) |
| 210 | 209 | rexlimdva | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( E. x e. ( -u B (,) -u a ) 0 = -u ( ( RR _D G ) ` -u x ) -> 0 e. ran ( RR _D G ) ) ) |
| 211 | 200 210 | biimtrid | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( 0 e. ran ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) -> 0 e. ran ( RR _D G ) ) ) |
| 212 | 199 211 | sylbid | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( 0 e. ran ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) -> 0 e. ran ( RR _D G ) ) ) |
| 213 | 197 212 | mtod | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -. 0 e. ran ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ) |
| 214 | 116 | ffvelcdmda | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( ( RR _D F ) ` z ) e. CC ) |
| 215 | 142 | ffvelcdmda | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( ( RR _D G ) ` z ) e. CC ) |
| 216 | 11 | ad2antrr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> -. 0 e. ran ( RR _D G ) ) |
| 217 | 142 | ffnd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D G ) Fn ( A (,) B ) ) |
| 218 | fnfvelrn | |- ( ( ( RR _D G ) Fn ( A (,) B ) /\ z e. ( A (,) B ) ) -> ( ( RR _D G ) ` z ) e. ran ( RR _D G ) ) |
|
| 219 | 217 218 | sylan | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( ( RR _D G ) ` z ) e. ran ( RR _D G ) ) |
| 220 | eleq1 | |- ( ( ( RR _D G ) ` z ) = 0 -> ( ( ( RR _D G ) ` z ) e. ran ( RR _D G ) <-> 0 e. ran ( RR _D G ) ) ) |
|
| 221 | 219 220 | syl5ibcom | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( ( ( RR _D G ) ` z ) = 0 -> 0 e. ran ( RR _D G ) ) ) |
| 222 | 221 | necon3bd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( -. 0 e. ran ( RR _D G ) -> ( ( RR _D G ) ` z ) =/= 0 ) ) |
| 223 | 216 222 | mpd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( ( RR _D G ) ` z ) =/= 0 ) |
| 224 | 214 215 223 | divcld | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) e. CC ) |
| 225 | 12 | adantr | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> C e. ( ( z e. ( A (,) B ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC B ) ) |
| 226 | fveq2 | |- ( z = -u x -> ( ( RR _D F ) ` z ) = ( ( RR _D F ) ` -u x ) ) |
|
| 227 | fveq2 | |- ( z = -u x -> ( ( RR _D G ) ` z ) = ( ( RR _D G ) ` -u x ) ) |
|
| 228 | 226 227 | oveq12d | |- ( z = -u x -> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) = ( ( ( RR _D F ) ` -u x ) / ( ( RR _D G ) ` -u x ) ) ) |
| 229 | 183 | pm2.21d | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -u x = B -> ( ( ( RR _D F ) ` -u x ) / ( ( RR _D G ) ` -u x ) ) = C ) ) |
| 230 | 229 | impr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ ( x e. ( -u B (,) -u a ) /\ -u x = B ) ) -> ( ( ( RR _D F ) ` -u x ) / ( ( RR _D G ) ` -u x ) ) = C ) |
| 231 | 160 224 174 225 228 230 | limcco | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> C e. ( ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D F ) ` -u x ) / ( ( RR _D G ) ` -u x ) ) ) limCC -u B ) ) |
| 232 | nfcv | |- F/_ x RR |
|
| 233 | nfcv | |- F/_ x _D |
|
| 234 | nfmpt1 | |- F/_ x ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) |
|
| 235 | 232 233 234 | nfov | |- F/_ x ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) |
| 236 | nfcv | |- F/_ x y |
|
| 237 | 235 236 | nffv | |- F/_ x ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` y ) |
| 238 | nfcv | |- F/_ x / |
|
| 239 | nfmpt1 | |- F/_ x ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) |
|
| 240 | 232 233 239 | nfov | |- F/_ x ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) |
| 241 | 240 236 | nffv | |- F/_ x ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` y ) |
| 242 | 237 238 241 | nfov | |- F/_ x ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` y ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` y ) ) |
| 243 | nfcv | |- F/_ y ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` x ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` x ) ) |
|
| 244 | fveq2 | |- ( y = x -> ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` y ) = ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` x ) ) |
|
| 245 | fveq2 | |- ( y = x -> ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` y ) = ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` x ) ) |
|
| 246 | 244 245 | oveq12d | |- ( y = x -> ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` y ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` y ) ) = ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` x ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` x ) ) ) |
| 247 | 242 243 246 | cbvmpt | |- ( y e. ( -u B (,) -u a ) |-> ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` y ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` y ) ) ) = ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` x ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` x ) ) ) |
| 248 | 128 | fveq1d | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` x ) = ( ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D F ) ` -u x ) ) ` x ) ) |
| 249 | 131 | fvmpt2 | |- ( ( x e. ( -u B (,) -u a ) /\ -u ( ( RR _D F ) ` -u x ) e. _V ) -> ( ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D F ) ` -u x ) ) ` x ) = -u ( ( RR _D F ) ` -u x ) ) |
| 250 | 130 249 | mpan2 | |- ( x e. ( -u B (,) -u a ) -> ( ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D F ) ` -u x ) ) ` x ) = -u ( ( RR _D F ) ` -u x ) ) |
| 251 | 248 250 | sylan9eq | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` x ) = -u ( ( RR _D F ) ` -u x ) ) |
| 252 | 154 | fveq1d | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` x ) = ( ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) ` x ) ) |
| 253 | 157 | fvmpt2 | |- ( ( x e. ( -u B (,) -u a ) /\ -u ( ( RR _D G ) ` -u x ) e. _V ) -> ( ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) ` x ) = -u ( ( RR _D G ) ` -u x ) ) |
| 254 | 156 253 | mpan2 | |- ( x e. ( -u B (,) -u a ) -> ( ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) ` x ) = -u ( ( RR _D G ) ` -u x ) ) |
| 255 | 252 254 | sylan9eq | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` x ) = -u ( ( RR _D G ) ` -u x ) ) |
| 256 | 251 255 | oveq12d | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` x ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` x ) ) = ( -u ( ( RR _D F ) ` -u x ) / -u ( ( RR _D G ) ` -u x ) ) ) |
| 257 | 11 | ad2antrr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -. 0 e. ran ( RR _D G ) ) |
| 258 | 207 | necon3bd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -. 0 e. ran ( RR _D G ) -> ( ( RR _D G ) ` -u x ) =/= 0 ) ) |
| 259 | 257 258 | mpd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( RR _D G ) ` -u x ) =/= 0 ) |
| 260 | 123 149 259 | div2negd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -u ( ( RR _D F ) ` -u x ) / -u ( ( RR _D G ) ` -u x ) ) = ( ( ( RR _D F ) ` -u x ) / ( ( RR _D G ) ` -u x ) ) ) |
| 261 | 256 260 | eqtrd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` x ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` x ) ) = ( ( ( RR _D F ) ` -u x ) / ( ( RR _D G ) ` -u x ) ) ) |
| 262 | 261 | mpteq2dva | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` x ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` x ) ) ) = ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D F ) ` -u x ) / ( ( RR _D G ) ` -u x ) ) ) ) |
| 263 | 247 262 | eqtrid | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( y e. ( -u B (,) -u a ) |-> ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` y ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` y ) ) ) = ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D F ) ` -u x ) / ( ( RR _D G ) ` -u x ) ) ) ) |
| 264 | 263 | oveq1d | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( y e. ( -u B (,) -u a ) |-> ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` y ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` y ) ) ) limCC -u B ) = ( ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D F ) ` -u x ) / ( ( RR _D G ) ` -u x ) ) ) limCC -u B ) ) |
| 265 | 231 264 | eleqtrrd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> C e. ( ( y e. ( -u B (,) -u a ) |-> ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` y ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` y ) ) ) limCC -u B ) ) |
| 266 | 82 84 87 88 89 133 159 186 192 196 213 265 | lhop1 | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> C e. ( ( y e. ( -u B (,) -u a ) |-> ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` y ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` y ) ) ) limCC -u B ) ) |
| 267 | nffvmpt1 | |- F/_ x ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` y ) |
|
| 268 | nffvmpt1 | |- F/_ x ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` y ) |
|
| 269 | 267 238 268 | nfov | |- F/_ x ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` y ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` y ) ) |
| 270 | nfcv | |- F/_ y ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` x ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` x ) ) |
|
| 271 | fveq2 | |- ( y = x -> ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` y ) = ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` x ) ) |
|
| 272 | fveq2 | |- ( y = x -> ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` y ) = ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` x ) ) |
|
| 273 | 271 272 | oveq12d | |- ( y = x -> ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` y ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` y ) ) = ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` x ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` x ) ) ) |
| 274 | 269 270 273 | cbvmpt | |- ( y e. ( -u B (,) -u a ) |-> ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` y ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` y ) ) ) = ( x e. ( -u B (,) -u a ) |-> ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` x ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` x ) ) ) |
| 275 | fvex | |- ( F ` -u x ) e. _V |
|
| 276 | eqid | |- ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) = ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) |
|
| 277 | 276 | fvmpt2 | |- ( ( x e. ( -u B (,) -u a ) /\ ( F ` -u x ) e. _V ) -> ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` x ) = ( F ` -u x ) ) |
| 278 | 34 275 277 | sylancl | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` x ) = ( F ` -u x ) ) |
| 279 | fvex | |- ( G ` -u x ) e. _V |
|
| 280 | eqid | |- ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) = ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) |
|
| 281 | 280 | fvmpt2 | |- ( ( x e. ( -u B (,) -u a ) /\ ( G ` -u x ) e. _V ) -> ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` x ) = ( G ` -u x ) ) |
| 282 | 34 279 281 | sylancl | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` x ) = ( G ` -u x ) ) |
| 283 | 278 282 | oveq12d | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` x ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` x ) ) = ( ( F ` -u x ) / ( G ` -u x ) ) ) |
| 284 | 283 | mpteq2dva | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( x e. ( -u B (,) -u a ) |-> ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` x ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` x ) ) ) = ( x e. ( -u B (,) -u a ) |-> ( ( F ` -u x ) / ( G ` -u x ) ) ) ) |
| 285 | 274 284 | eqtrid | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( y e. ( -u B (,) -u a ) |-> ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` y ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` y ) ) ) = ( x e. ( -u B (,) -u a ) |-> ( ( F ` -u x ) / ( G ` -u x ) ) ) ) |
| 286 | 285 | oveq1d | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( y e. ( -u B (,) -u a ) |-> ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` y ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` y ) ) ) limCC -u B ) = ( ( x e. ( -u B (,) -u a ) |-> ( ( F ` -u x ) / ( G ` -u x ) ) ) limCC -u B ) ) |
| 287 | 266 286 | eleqtrd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> C e. ( ( x e. ( -u B (,) -u a ) |-> ( ( F ` -u x ) / ( G ` -u x ) ) ) limCC -u B ) ) |
| 288 | negeq | |- ( x = -u z -> -u x = -u -u z ) |
|
| 289 | 288 | fveq2d | |- ( x = -u z -> ( F ` -u x ) = ( F ` -u -u z ) ) |
| 290 | 288 | fveq2d | |- ( x = -u z -> ( G ` -u x ) = ( G ` -u -u z ) ) |
| 291 | 289 290 | oveq12d | |- ( x = -u z -> ( ( F ` -u x ) / ( G ` -u x ) ) = ( ( F ` -u -u z ) / ( G ` -u -u z ) ) ) |
| 292 | 82 | adantr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> -u B e. RR ) |
| 293 | eliooord | |- ( z e. ( a (,) B ) -> ( a < z /\ z < B ) ) |
|
| 294 | 293 | adantl | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> ( a < z /\ z < B ) ) |
| 295 | 294 | simprd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> z < B ) |
| 296 | 24 22 | ltnegd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> ( z < B <-> -u B < -u z ) ) |
| 297 | 295 296 | mpbid | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> -u B < -u z ) |
| 298 | 292 297 | gtned | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> -u z =/= -u B ) |
| 299 | 298 | neneqd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> -. -u z = -u B ) |
| 300 | 299 | pm2.21d | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> ( -u z = -u B -> ( ( F ` -u -u z ) / ( G ` -u -u z ) ) = C ) ) |
| 301 | 300 | impr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ ( z e. ( a (,) B ) /\ -u z = -u B ) ) -> ( ( F ` -u -u z ) / ( G ` -u -u z ) ) = C ) |
| 302 | 28 68 81 287 291 301 | limcco | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> C e. ( ( z e. ( a (,) B ) |-> ( ( F ` -u -u z ) / ( G ` -u -u z ) ) ) limCC B ) ) |
| 303 | 24 | recnd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> z e. CC ) |
| 304 | 303 | negnegd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> -u -u z = z ) |
| 305 | 304 | fveq2d | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> ( F ` -u -u z ) = ( F ` z ) ) |
| 306 | 304 | fveq2d | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> ( G ` -u -u z ) = ( G ` z ) ) |
| 307 | 305 306 | oveq12d | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> ( ( F ` -u -u z ) / ( G ` -u -u z ) ) = ( ( F ` z ) / ( G ` z ) ) ) |
| 308 | 307 | mpteq2dva | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( z e. ( a (,) B ) |-> ( ( F ` -u -u z ) / ( G ` -u -u z ) ) ) = ( z e. ( a (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) ) |
| 309 | 308 | oveq1d | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( z e. ( a (,) B ) |-> ( ( F ` -u -u z ) / ( G ` -u -u z ) ) ) limCC B ) = ( ( z e. ( a (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
| 310 | 47 | resmptd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( z e. ( A (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( a (,) B ) ) = ( z e. ( a (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) ) |
| 311 | 310 | oveq1d | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( ( z e. ( A (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( a (,) B ) ) limCC B ) = ( ( z e. ( a (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
| 312 | fss | |- ( ( F : ( A (,) B ) --> RR /\ RR C_ CC ) -> F : ( A (,) B ) --> CC ) |
|
| 313 | 94 57 312 | sylancl | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> F : ( A (,) B ) --> CC ) |
| 314 | 313 | ffvelcdmda | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( F ` z ) e. CC ) |
| 315 | 59 | ffvelcdmda | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( G ` z ) e. CC ) |
| 316 | 10 | ad2antrr | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> -. 0 e. ran G ) |
| 317 | 56 | ffnd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> G Fn ( A (,) B ) ) |
| 318 | fnfvelrn | |- ( ( G Fn ( A (,) B ) /\ z e. ( A (,) B ) ) -> ( G ` z ) e. ran G ) |
|
| 319 | 317 318 | sylan | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( G ` z ) e. ran G ) |
| 320 | eleq1 | |- ( ( G ` z ) = 0 -> ( ( G ` z ) e. ran G <-> 0 e. ran G ) ) |
|
| 321 | 319 320 | syl5ibcom | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( ( G ` z ) = 0 -> 0 e. ran G ) ) |
| 322 | 321 | necon3bd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( -. 0 e. ran G -> ( G ` z ) =/= 0 ) ) |
| 323 | 316 322 | mpd | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( G ` z ) =/= 0 ) |
| 324 | 314 315 323 | divcld | |- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( ( F ` z ) / ( G ` z ) ) e. CC ) |
| 325 | 324 | fmpttd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( z e. ( A (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) : ( A (,) B ) --> CC ) |
| 326 | ioossre | |- ( A (,) B ) C_ RR |
|
| 327 | 326 57 | sstri | |- ( A (,) B ) C_ CC |
| 328 | 327 | a1i | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( A (,) B ) C_ CC ) |
| 329 | eqid | |- ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) |
|
| 330 | ssun2 | |- { B } C_ ( ( a (,) B ) u. { B } ) |
|
| 331 | snssg | |- ( B e. RR -> ( B e. ( ( a (,) B ) u. { B } ) <-> { B } C_ ( ( a (,) B ) u. { B } ) ) ) |
|
| 332 | 78 331 | syl | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( B e. ( ( a (,) B ) u. { B } ) <-> { B } C_ ( ( a (,) B ) u. { B } ) ) ) |
| 333 | 330 332 | mpbiri | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> B e. ( ( a (,) B ) u. { B } ) ) |
| 334 | 106 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 335 | 326 | a1i | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( A (,) B ) C_ RR ) |
| 336 | 78 | snssd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> { B } C_ RR ) |
| 337 | 335 336 | unssd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( A (,) B ) u. { B } ) C_ RR ) |
| 338 | 337 57 | sstrdi | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( A (,) B ) u. { B } ) C_ CC ) |
| 339 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( ( A (,) B ) u. { B } ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) e. ( TopOn ` ( ( A (,) B ) u. { B } ) ) ) |
|
| 340 | 334 338 339 | sylancr | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) e. ( TopOn ` ( ( A (,) B ) u. { B } ) ) ) |
| 341 | topontop | |- ( ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) e. ( TopOn ` ( ( A (,) B ) u. { B } ) ) -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) e. Top ) |
|
| 342 | 340 341 | syl | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) e. Top ) |
| 343 | indi | |- ( ( a (,) +oo ) i^i ( ( A (,) B ) u. { B } ) ) = ( ( ( a (,) +oo ) i^i ( A (,) B ) ) u. ( ( a (,) +oo ) i^i { B } ) ) |
|
| 344 | pnfxr | |- +oo e. RR* |
|
| 345 | 344 | a1i | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> +oo e. RR* ) |
| 346 | 14 | adantr | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> B e. RR* ) |
| 347 | iooin | |- ( ( ( a e. RR* /\ +oo e. RR* ) /\ ( A e. RR* /\ B e. RR* ) ) -> ( ( a (,) +oo ) i^i ( A (,) B ) ) = ( if ( a <_ A , A , a ) (,) if ( +oo <_ B , +oo , B ) ) ) |
|
| 348 | 43 345 42 346 347 | syl22anc | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( a (,) +oo ) i^i ( A (,) B ) ) = ( if ( a <_ A , A , a ) (,) if ( +oo <_ B , +oo , B ) ) ) |
| 349 | xrltnle | |- ( ( A e. RR* /\ a e. RR* ) -> ( A < a <-> -. a <_ A ) ) |
|
| 350 | 42 43 349 | syl2anc | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( A < a <-> -. a <_ A ) ) |
| 351 | 44 350 | mpbid | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -. a <_ A ) |
| 352 | 351 | iffalsed | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> if ( a <_ A , A , a ) = a ) |
| 353 | 78 | ltpnfd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> B < +oo ) |
| 354 | xrltnle | |- ( ( B e. RR* /\ +oo e. RR* ) -> ( B < +oo <-> -. +oo <_ B ) ) |
|
| 355 | 346 344 354 | sylancl | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( B < +oo <-> -. +oo <_ B ) ) |
| 356 | 353 355 | mpbid | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -. +oo <_ B ) |
| 357 | 356 | iffalsed | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> if ( +oo <_ B , +oo , B ) = B ) |
| 358 | 352 357 | oveq12d | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( if ( a <_ A , A , a ) (,) if ( +oo <_ B , +oo , B ) ) = ( a (,) B ) ) |
| 359 | 348 358 | eqtrd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( a (,) +oo ) i^i ( A (,) B ) ) = ( a (,) B ) ) |
| 360 | elioopnf | |- ( a e. RR* -> ( B e. ( a (,) +oo ) <-> ( B e. RR /\ a < B ) ) ) |
|
| 361 | 43 360 | syl | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( B e. ( a (,) +oo ) <-> ( B e. RR /\ a < B ) ) ) |
| 362 | 78 85 361 | mpbir2and | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> B e. ( a (,) +oo ) ) |
| 363 | 362 | snssd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> { B } C_ ( a (,) +oo ) ) |
| 364 | sseqin2 | |- ( { B } C_ ( a (,) +oo ) <-> ( ( a (,) +oo ) i^i { B } ) = { B } ) |
|
| 365 | 363 364 | sylib | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( a (,) +oo ) i^i { B } ) = { B } ) |
| 366 | 359 365 | uneq12d | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( ( a (,) +oo ) i^i ( A (,) B ) ) u. ( ( a (,) +oo ) i^i { B } ) ) = ( ( a (,) B ) u. { B } ) ) |
| 367 | 343 366 | eqtrid | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( a (,) +oo ) i^i ( ( A (,) B ) u. { B } ) ) = ( ( a (,) B ) u. { B } ) ) |
| 368 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 369 | reex | |- RR e. _V |
|
| 370 | 369 | ssex | |- ( ( ( A (,) B ) u. { B } ) C_ RR -> ( ( A (,) B ) u. { B } ) e. _V ) |
| 371 | 337 370 | syl | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( A (,) B ) u. { B } ) e. _V ) |
| 372 | iooretop | |- ( a (,) +oo ) e. ( topGen ` ran (,) ) |
|
| 373 | 372 | a1i | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( a (,) +oo ) e. ( topGen ` ran (,) ) ) |
| 374 | elrestr | |- ( ( ( topGen ` ran (,) ) e. Top /\ ( ( A (,) B ) u. { B } ) e. _V /\ ( a (,) +oo ) e. ( topGen ` ran (,) ) ) -> ( ( a (,) +oo ) i^i ( ( A (,) B ) u. { B } ) ) e. ( ( topGen ` ran (,) ) |`t ( ( A (,) B ) u. { B } ) ) ) |
|
| 375 | 368 371 373 374 | mp3an2i | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( a (,) +oo ) i^i ( ( A (,) B ) u. { B } ) ) e. ( ( topGen ` ran (,) ) |`t ( ( A (,) B ) u. { B } ) ) ) |
| 376 | 367 375 | eqeltrrd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( a (,) B ) u. { B } ) e. ( ( topGen ` ran (,) ) |`t ( ( A (,) B ) u. { B } ) ) ) |
| 377 | eqid | |- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
|
| 378 | 106 377 | rerest | |- ( ( ( A (,) B ) u. { B } ) C_ RR -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) = ( ( topGen ` ran (,) ) |`t ( ( A (,) B ) u. { B } ) ) ) |
| 379 | 337 378 | syl | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) = ( ( topGen ` ran (,) ) |`t ( ( A (,) B ) u. { B } ) ) ) |
| 380 | 376 379 | eleqtrrd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( a (,) B ) u. { B } ) e. ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) ) |
| 381 | isopn3i | |- ( ( ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) e. Top /\ ( ( a (,) B ) u. { B } ) e. ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) ) ` ( ( a (,) B ) u. { B } ) ) = ( ( a (,) B ) u. { B } ) ) |
|
| 382 | 342 380 381 | syl2anc | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) ) ` ( ( a (,) B ) u. { B } ) ) = ( ( a (,) B ) u. { B } ) ) |
| 383 | 333 382 | eleqtrrd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> B e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) ) ` ( ( a (,) B ) u. { B } ) ) ) |
| 384 | 325 47 328 106 329 383 | limcres | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( ( z e. ( A (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( a (,) B ) ) limCC B ) = ( ( z e. ( A (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
| 385 | 309 311 384 | 3eqtr2d | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( z e. ( a (,) B ) |-> ( ( F ` -u -u z ) / ( G ` -u -u z ) ) ) limCC B ) = ( ( z e. ( A (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
| 386 | 302 385 | eleqtrd | |- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> C e. ( ( z e. ( A (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
| 387 | 18 386 | rexlimddv | |- ( ph -> C e. ( ( z e. ( A (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |