This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elioopnf | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐵 ∈ ( 𝐴 (,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 2 | elioo2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐵 ∈ ( 𝐴 (,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ∧ 𝐵 < +∞ ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐵 ∈ ( 𝐴 (,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ∧ 𝐵 < +∞ ) ) ) |
| 4 | df-3an | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ∧ 𝐵 < +∞ ) ↔ ( ( 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝐵 < +∞ ) ) | |
| 5 | ltpnf | ⊢ ( 𝐵 ∈ ℝ → 𝐵 < +∞ ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 < +∞ ) |
| 7 | 6 | pm4.71i | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ↔ ( ( 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝐵 < +∞ ) ) |
| 8 | 4 7 | bitr4i | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ∧ 𝐵 < +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ) |
| 9 | 3 8 | bitrdi | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐵 ∈ ( 𝐴 (,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ) ) |